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We study the evolution of a random weighted network with complex nonlinear dynamics at each node,
whose activity may cease as a result of interactions with other nodes. Starting from a knowledge of the
microlevel behavior at each node, we develop a macroscopic description of the system in terms of the statis-
tical features of the subnetwork of active nodes. We find that very different networks evolve to active subnet-
works with similar asymptotic characteristics: the size of the active set is independent of the total number of
nodes in the network, and the average degree of the active nodes is independent of both the network size and
its connectivity. This robustness has strong implications for dynamical networks observed in the natural world,
notably the existence of a characteristic range of links per species across ecological systems.
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With the recent surge of interest in complex networks �1�,
the behavior of dynamical units interacting on networks has
become a problem of crucial relevance to areas ranging from
physics to biology to engineering. Coupled nonlinear sys-
tems, such as oscillators and maps, have been extensively
investigated on regular lattices �2�. The graph theoretic as-
pects of random networks have also received considerable
attention �3�. However, there have been comparatively few
studies on networks with nonlinear dynamics at the nodes
�4�. Here we focus on this relatively unexplored area of ran-
dom networks of nonlinear maps, and study the role played
by the network properties in the time evolution of the dy-
namical states of the nodes, in particular, and the global char-
acteristics of the evolved network, in general.

We consider networks with a wide range of �i� size �i.e.,
number of nodes, N�, �ii� connectivity C between nodes �i.e.,
density of links�, �iii� measure of interaction strength � that
determines the weights of the connections �i.e., how strongly
the nodes are coupled�, and �iv� local dynamics at the nodes
�ranging from regular to chaotic�. The important feature here
is that, even though the isolated nodes may exhibit a wide
range of activity, the network yields generically chaotic glo-
bal dynamics. This can result in a fraction of the nodes being
driven to a state of null activity, implying that under interac-
tions a certain set of nodes show a transition from persistent
to transient activity. In this paper, we examine the properties
of the subnetwork of nodes with persistent activity. We show
that not only is the size of this subnetwork of active nodes
independent of the network size, but the total number of
links in this subnetwork is also independent of both the size
and the connectivity of the network. These results have con-
siderable significance for the robustness of networks occur-
ring in nature.

The work reported in this paper can be seen in the context
of deriving a statistical mechanics of interacting dynamical
elements �5,6�. Starting from a microlevel dynamical de-
scription, where the relevant variables are the local states of
each node in the network, we would like to achieve a mac-
roscopic description of the system in terms of the number of
active nodes, and would like to understand how such macro-
variables are determined by overall network properties, such
as N, C, and �. One would have naively supposed that the
macroscopic system variable of interest, namely, the size of

the persistently active subnetwork, would be an extensive
quantity. However, our results show that this macroscopic
quantity does not scale with system size. This implies the
existence of “universal” relations between various gross net-
work properties in the asymptotic state, and the emergence of
characteristic robust features independent of network size.

Our model is quite general: it has N dynamical elements
in a network with random nonlocal connectivity. The dy-
namical state of each node i �=1, . . . ,N� at time n is associ-
ated with a continuous variable xi�n�, which is the micro-
scopic variable of interest in the system. The interaction
between two nodes is given by a coupling coefficient Jij. We
consider the most general case where these coefficients can
be asymmetric �Jij�Jji� and can be either positive or nega-
tive. The time evolution of the system is given by

xi�n + 1� = f�xi�n��1 + �
j

Jijxj�n��	 , �1�

where f represents the local on-site dynamics. In this paper
we have shown representative results for f chosen to be the
exponential map,

f�x� = 
xer�1−x� if x � 0,

0 otherwise,
� �2�

r being the nonlinearity parameter leading from periodic be-
havior to chaos �7�. This belongs to the class of maps defined
over the semi-infinite interval �0,�� rather than a finite,
bounded interval �e.g., as is the case for logistic map�. This
allows us to explore arbitrary distributions of couplings be-
tween nodes, unlike maps bounded in an interval, which are
well behaved only for restrictive coupling schemes. In addi-
tion, in our case, the nonlinearity parameter r is not artifi-
cially restricted by the domain of definition of the map. All
these features increase the generality of our results, and ad-
ditionally, such maps provide a more accurate description of
natural processes, e.g., population dynamics �8,9�.

The connectivity matrix J= �Jij
 is, in general, a sparse
matrix, with probability 1−C that an element is zero. The
diagonal entries Jii=0 indicate that, in the absence of inter-
actions, the local nonlinear map �2� completely determines
the dynamical state of each node. The nonzero entries in the

PHYSICAL REVIEW E 74, 066117 �2006�

1539-3755/2006/74�6�/066117�5� ©2006 The American Physical Society066117-1

http://dx.doi.org/10.1103/PhysRevE.74.066117


matrix are chosen from a normal distribution with mean 0
and variance �2. Note that we have also used uniform distri-
butions over the interval �−� ,�� without any qualitative
changes in the results.

Initially, the states of all the N nodes are randomly dis-
tributed about x=1. During the evolution of the network, if
the state of a node becomes x�0, it stops being active and
subsequently has no interaction with the rest of the network.
Note that, in the absence of coupling, the activity of indi-
vidual nodes is persistent, which allows us to focus on the
instability induced by network interactions, rather than the
intrinsic behavior of the nodes. As a result of these interac-
tions, the number of persistent nodes �i.e., with x�0� de-
creases rapidly from the initial value, but eventually attains a
steady state. This is because, at the initial stages, the popu-
lation of each node undergoes strong fluctuations due to in-
teraction with other nodes coupled to it, resulting in the ces-
sation of activity of a large number of nodes. Within a very
short time, the effective number of interacting nodes de-
crease and, consequently, the intensity of such fluctuations is
also reduced. We have continued the simulations for up to
104 iterations, when the probability of further extinctions
was found to become extremely small. We then look at the
number of nodes which survive with persistent activity, as a
function of the model parameters.

The number of nodes with persistent activity is a measure
of the global stability of the network. The information that
we get from this is very different from the local stability and
complementary to it. Note that, in the study of interdiscipli-
nary problems, global stability �or persistence� is often much
more relevant than the more commonly used measures of
local stability. For example, networks susceptible to cata-
strophic failures or crashes are extremely common in the real
world. In such problems, the quantity of interest is the sys-
tem’s global stability, as reflected in the survival probability
of nodal activity, rather than local stability, which, in the
absence of regular equilibria, does not contribute to our un-
derstanding of the overall system dynamics �10�.

We now look at the features of the asymptotic subnetwork
consisting of the nodes which survive with persistent activ-
ity. The first significant feature of this emergent subnetwork
is that its size is independent of the system size N. This is
clearly evident from Fig. 1, which shows that the size of the
active subnetwork quickly approaches its asymptotic value
Nactive which is a constant with respect to N �within error
bars�. For example, for the representative case of �=0.1, C
=1, r=4, we find that Nactive=7.705±1.260 for N=250,
while for N=1000, Nactive=7.835±1.247. This robustness
holds even for different local dynamics and coupling
schemes �i.e., variations of Eqs. �1� and �2�� as well as con-
nection topologies, such as small world networks.

In the absence of connections �C=0�, Nactive �=N� is ob-
viously extensive with system size. But for C�0, Nactive
saturates to a value independent of N. This nonextensivity
for the active subnetwork has significant implications. For
instance, let us consider two stable networks, each of which
has Nactive persistently active nodes. On being joined together
�analogous to two distinct ecological systems being suddenly
linked to one another�, the merger initially results in a high
number of active nodes, which is essentially the sum of the
active nodes of the two components �=2Nactive�. However,
the new connections prompt a fresh wave of extinctions to
occur, resulting in the number of active nodes rapidly settling
back to the characteristic value Nactive.

An even more remarkable feature is that the average num-
ber of links per node in the active subnetwork, kactive, is
independent of N, as well as of C. Therefore, kactive is inde-
pendent of k0 �=NC�, the average degree of the entire net-
work �Fig. 2�. The significance of this result is evident: re-
gardless of the size and connectivity of the network, the
nodes in the active subnetwork have a characteristic number
of links.

The active subnetwork is further characterized by disas-
sortativity, i.e., nodes with high degree connect preferentially
to nodes having fewer links, a feature observed in many
biological and technological networks. For instance, the dis-

FIG. 1. �Color online� Time evolution of the
number of active nodes for networks of various
sizes N �C=1, �=0.1, r=4�, showing the rapid
decay to the asymptotic value that is independent
of N. �Inset� The asymptotic number of active
nodes, Nactive, as a function of network size N ��,
C=0.1, �=0.1, r=4; �, C=1, �=0.1, r=2; �,
C=0.1, �=0.5, r=4; �, C=1, �=0.1, r=4�. Note
that, in all cases, Nactive is independent of the net-
work size N, for large N.
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assortativity index as defined by Newman �11� is −0.11 for
N=100,C=0.5,�=0.1,r=4.

The fact that the size of the active set is independent of
the network size N may be naively expected from the May-
Wigner stability criterion �12�. According to this, a system is
critically stable if NC�2�1. So the size of the asymptoti-
cally stable set Nactive is proportional to 1/Cactive�active

2 . How-
ever, it is not obvious that these are independent of network
size N, as in an evolving system C and � for the active set
change significantly over time, with nodes becoming inactive
and their links becoming nonfunctional. As a result, we have
an interplay between the size and structure of the subnetwork
of active nodes: the size of this set changes due to the sta-
bility criterion involving the structural parameters C and � at
that point in time, while the latter �C ,�� themselves change
due to the reduction in the number of active nodes. In view
of the above, we now examine these properties of the
asymptotic set of active nodes.

First, we examine the effective connectivity of the
asymptotic subnetwork, Cactive, which is indeed found to be
independent of the network size for large N. This can also be
inferred from Fig. 2, by noting that the kactive vs k0 curve can
be constructed entirely by considering C=1, for which Cactive
�=C� is obviously independent of N. The same curve holds
for other values of C and therefore one can conclude that
Cactive is independent of N, for all C. However, the nodes in
the active subnetwork have a significantly different distribu-
tion of links from that of the initial network �Fig. 3�. More-
over, for 0�C�1, the mean effective connectivity of the
asymptotic subnetwork shows a clear trend of evolving to a
value lower than C �Fig. 3, inset�, with the deviation increas-
ing with average interaction strength � and local nonlinearity
parameter r. This indicates that the survival of active nodes
is a biased selection process �as is clear from Fig. 4� driven
by dynamical fluctuations.

Next, we address the question of the independence of
�active with respect to N, by looking at the distribution of the

connection weights Jij of the persistent nodes. Specifically,
we examine how this differs from the distribution of Jij in the
full network. We observe that starting from a Gaussian dis-
tribution �for instance�, the distribution that emerges is inde-
pendent of N, indicating that �active is independent of the
network size. Further, the distribution is markedly skewed
towards positive weights implying a selective tendency of
nodes with high negative links to be eliminated. This is con-
sistent with the probability of survival of a single node being
a decreasing function of the relative number of its negative

FIG. 2. �Color online� Asymptotic number of
links per node in the active subnetwork �kactive� as
a function of the number of links per node of the
full network �k0� for different values of � �C
=1,r=4�. The broken line represents kactive=k0.
The inset shows kactive as a function of � for N
=100 and 1000. Note that the two data sets con-
verge at a high value of � and match well with
the broken line representing �1/�.

FIG. 3. �Color online� The distribution of local connectivity
�defined as the ratio of the actual degree to the total number of links
possible� for nodes in the initial network �dashed line� and the
asymptotic active subnetwork �solid line�. The network parameters
are N=250, C=0.5, �=0.1, and r=4. Note that the initial Gaussian
distribution has broadened and the mean value has shifted from 0.5
to 0.4, approximately. The inset shows the connectivity of the active
subnetwork, Cactive, as a function of C for two different network
sizes.
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links �Fig. 4�. Note that the probability of survival of a node
is a similarly decreasing function of its initial degree �Fig. 4,
inset�.

Further, kactive varies with the overall network average in-
teraction strength as �1/� �Fig. 2 �inset��. This is significant
as it indicates the invalidity of naive arguments which would
suggest that kactive�1/�2. Instead, this nontrivial scaling can
be understood from the condition determining persistence of
activity for an individual node i: P�� jJijxj �−1�. Note that
the contributing terms in the sum are due to active nodes
which have outgoing links �with nonzero weights� to node i,
i.e., the degree of the node i in the active subnetwork. From
Fig. 5, it is apparent that the asymptotic distribution of Jij for
the set of active nodes has a positive mean �. This implies
that the quantity � jJijxj has a variance that is dominated by
the leading term �kactive, implying kactive�1/� �13�. To see
how � is related to �, we look in detail at the asymptotic
distribution of Jij. It is immediately apparent that the domi-
nant change in the asymptotic distribution compared to the
original distribution is the loss of the strong negative links.
This results in the final distribution being truncated at the
negative end, with the cutoff J* apparently independent of �
�Fig. 5�. Assuming that the positive part of the distribution is
almost unchanged from its original form, we see that �
=�J*

� JijP�Jij� essentially varies as �, as the shift of the mean
from zero is entirely determined by the width of the original
distribution.

In conclusion, we have shown that a very simple model,

with very few assumptions regarding the node properties and
their dynamics, yields surprisingly robust macroscopic fea-
tures of the emergent active system: �a� the asymptotic num-
ber of active nodes is independent of the network size, and
�b� the asymptotic number of links between the active nodes
is independent of both the size of the network and its con-
nectivity. The link removal process is not guided here by any
explicit fitness criterion designed to achieve a desired end
state but emerges naturally from the dynamics at the nodes.
This robustness is all the more remarkable as the dynamics is
spatiotemporally chaotic even in the asymptotic state and the
selection process leading to the active subnetwork is driven
by fluctuations of individual node properties, such as their
initial degree.

The observed nonextensivity of the active subnetwork in-
dicates that designing robust structures simply by increasing
the redundancy of nodes, keeping the connectivity and inter-
action strength distribution unchanged, is not a good strategy,
as the number of asymptotically active nodes is independent
of the initial number of nodes that one starts out with. This
provides an explanation for similar observations in natural
and artificial complex systems, such as the conservation of
the number of species in an ecosystem after major extinc-
tions �e.g., after the eruption in Krakatoa� or migrations �e.g.,
after the linking of North and South America� �14�, as well
as the existence of a characteristic range of links per species
�3–5� across different environments �15�.

FIG. 4. �Color online� The persistence probability �i.e., survival
of activity� of individual nodes as a function of the fraction of
negative links to that node, appropriately scaled by the network size
N, using Fc

N=0.1 �N=50�, 0.06 �N=100�, and 0.039 �N=250�. The
network parameters are C=0.1, �=0.1, and r=4. The inset shows
the persistence probability of a node as a function of its degree.

FIG. 5. Distribution of the �nonzero� interaction strengths Jij

between active nodes of a network for C=0.5, �=0.1 �solid line�,
C=1, �=0.1 �dashed line�, and C=0.5, �=0.2 �dotted line�. Note
that the cutoff at the lower end, J*, is independent of �. The inset
shows the Jij distribution in the full network for the same set of
parameters.
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