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Evidence for directed percolation universality at the onset of spatiotemporal intermittency
in coupled circle maps
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We consider a lattice of coupled circle maps, a popular model for the study of mode-locked phenomena. We
find that the onset of spatiotemporal intermitte&f1) in this system is analogous to directed percolation
(DP), with the transition being to a unique absorbing state for low nonlinearities, and to weakly chaotic
absorbing states for high nonlinearities. We find that the complete set of static exponents and spreading
exponents at all critical points match those of DP very convincingly. Further, hyperscaling relations are
fulfilled, leading to independent controls and consistency checks of the values of all the critical exponents.
These results provide an example in support of the conjecture that the onset of STI in deterministic models
belongs to the DP universality class. Nonuniversal spreading exponents are seen only for the cases where the
initial state is homogeneous with symmetrically placed seeds leading to strictly symmetric spreading. However,
very small departures from homogeneity are sufficient to restore the DP exponents.

DOI: 10.1103/PhysRevE.67.056218 PACS nunier05.45.Ra

[. INTRODUCTION and possessing infinitely many absorbing states. Surprisingly,
it was found that not only were the exponents governing the
Spatiotemporal intermittenc{STI) in coupled map lat- onset of STI different from those of DP, they were also non-
tices(CML) has been extensively studied in varied contextsuniversal in natur¢7]. This nonuniversal behavior was con-
especially as it is the precursor of fully developed spatiotemsidered to be due to the existence of traveling solitary exci-
poral chaos in extended dynamical systefip There are tations (solitong with long lifetimes in this model. In Ref.
two types of motion seen in systems exhibiting STI: laminar8] it was argued that the existence of these solitons, which
and turbulent. The laminar region is characterized by periSPoiled the DP nature of the universality class, was a conse-
odic or even weakly chaotic dynamics, while no spatiotem-duence of the synchronous updating rule and asynchronous

porally regular structure can be seen in the turbulent regimé!Pdates were tried with this model. This asynchronous up-
A laminar of “inactive” site becomes turbulent or “active” date destroyed the solitons and then the static exponents

at a particular time only if at least one of its neighbors was '€re found to be consistent with DP exponefiéh Later it

turbulent at an earlier time, i.e., there is no spontaneous crevas also observed that even finite I|'f(.at|m.e solitons CO.UId
completely change the nature of transition in a weak soliton

ation of turbulent sites. Hence a turbulent site can e'th.efegion[g]. This indicates that it isiontrivial to map deter-
. o . Thinistic dynamics to stochastic behavies various spa-
neighbor 2]. To be more precise, if the propagation rate of ;e mnoral structuretsuch as these solitonmay introduce
turbulence is below a certain threshold, the turbulent statel%ng range correlations, which ruin the analddg]. Hence,
die out and the system remains in the laminar state for al js of considerable interest to find CMLs with regimes
time (laminar phase or inactive phas®n the other hand, on \yhere there are no additional special spatiotemporal struc-
exceeding this threshold, the turbulent states start “percolatyres, which can be used as clean testbeds for checking the
ing” in space-time(turbulent or inactive phageAlso, once  validity of the DP universality class.
all the sites relax spontaneously to its laminar state, the sys- Since the state variables of CMLs can often be identified
tem gets trapped in this state for all time. Hence, the laminawith physical quantitiegsuch as, voltage, current, pressure,
state is “absorbing” in STI. The existence of the absorbingtemperature, concentration, or velogitin fairly realistic
states led to the conjecture by Pomeau that STI in determirsituations, it is conceivable that such models may suggest
istic models also belongs to the directed percolatibi®) various experimental possibilities for observing DP, which
universality clas$3]. still remains an outstanding problepd]. Further, STl is a
While there is substantial evidence of DP universality incommon phenomenon of many extended systems and is
stochastic models exhibiting a continuous transition to arseen, for instance, in experiments on convecfiij and in
absorbing statg4—€], it is of considerable interest to exam- the “printers instability”[12]. Therefore, if the onset of STI
ine the robustness of DP critical behavior in systems withdoes in fact exhibit DP universality, then it could lead to
completely deterministic evolution rulefo this end, Chate promising candidates for observing DP in real phenomena. A
and Manneville introduced a simple CME] exhibiting STl recent experimer|tL3] that studies the transition to STl in a
one-dimensional system of ferrofluid spikes driven by an ex-
ternal oscillating magnetic field, finds that four of the five

*Email address: janaki@wagner.ucsc.edu measured exponents are in agreement with DP exponents
"Email address: sudeshna@imsc.res.in within experimental resolution. We note, however, that the
*Email address: gupte@chaos.iitm.ernet.in fifth exponent shows a significant departure from DP behav-
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ior, which may be due to the finite size of the apparatus omwheret is the discrete time index, ards the site index i(
due to the absence of a true absorbing state. We also note thatl,..L), with L being the system size. Parametgives the
this is the only experimental system that shows DP expostrength of the diffusive coupling between sitand its two

nents so fasee Table | in Refl13]). neighbors. The local on-site map is given by
In the last decade, the Chate-Manneville CML and its

variants[9] have been the only class of CML studied exten- Kk
sively in this context. Numerical evidence from more varied f()=0+w— 2—sin( 270), 2
sources is required, especially in the absence of analytical ™

results, in order to settle the question of DP universality in h deai h i . hi has b
transitions occurring in deterministic systems. Thus, it is ofVNere parametegives the nonlinearity. This CML has been

considerable interest to be able to find examples of this corStudied extensively with parallel updates and has a rich phase
respondence in systems quite distinct from the Chatediagram with many types of attractors and strong sensitivity
Manneville class, and with qualitatively different absorbingt0 initial conditions[16,17). In particular, this system also
states, that would lend credence to the Pomeau conjecturgas regimes of STI when evolved in parallel with random
This work provides one such example. initial conditions. Figures 1 and 2 show space-time plots of
In this paper, we consider the coupled circle map latticethe spatiotemporal intermittency observed in two different
[14] that has been used to model the mode-locking behavioBTI regimes. It is clear that no traveling wave solitonlike
of the type seen in coupled oscillator systems and in diversstructures are seen in this regime. Hence, it is not necessary
experimental systems such as charge density waves and introduce any asynchronicity here to destroy “solitonic”
Josephson-Junction arralyb]. We find that this system has behavior, as this system is naturally free of such spatiotem-
regimes that show spatiotemporal intermittency, with bothporal excitations in the parameter region studied here.
unique and weakly chaotic laminar regions, at different val- we shall now study the onset of spatiotemporal intermit-
ues of the nonlinearity parameter. Importantly, the solitongency in this system. Interestingly, as mentioned before, two

that spoilt the DP behavior in the earlier stud[@?9] are  gyalitatively distinct absorbing regions can be found in this
completely absent here. Thus, we have, at hand, a CMkystem.

without any potentially problematic coherent spatiotemporal (i) When the nonlinearity parametér= 1, there are re-

structures, showing the onset of spatiotemporal intermittency: _ .
very cleanly. This CML can then serve as a good testbed fo 1ons of (e~ ) space where the system goes to the synchro

! " . : nized spatiotemporal fixed poing* = 1/27 sin” Y(2mw/K).
checking the validity of the DP universality class for both " . . . .
unique gnd fluctuatixrﬂg absorbing states. y This constitutes ainique absorbing statésee Fig. 1 We

We will now present results from this system, which f:lose-ly scrgtinize the critical behavior at two critical points
strongly indicate that the complete set of static exponentd! this regime: ®=0.064, €=0.63775 andw=0.068, €
characterizing the transition to STI are completely consistent 0-732 77. These mark the transition from a laminar phase
states. We will also show that the spreading exponéits ~ from 6.
namic exponenjsfor unique as well as fluctuating absorbing (i) When nonlinearity parametér= 3.1, there are regions
states agree within 3% of those obtained in DP. Further, wef (e— w) space where sites with any value less thaoon-
will demonstrate that the hyperscaling relations in case of the
static as well as the spreading exponents are also satisfied.
Thus we will provide two distinct examples of clean DP
universality in transitions to STI, one of which constitutes an
example of this correspondence in a CML with a unique
absorbing state, and the other constitutes an example of this
correspondence when there exists weakly chaotic absorbing
state.

We also obtain spreading exponents from highly symmet-
ric initial states where active se@ll are symmetrically
placed in a homogeneous background. Such initial states lead
to strictly symmetric spreading and nonuniversal exponents.
This is consistent with the comment of Grassbeggeal. [6]
that nonuniversal exponents cannot be expected for spread-
ing from non-natural initial states. We note that very small
departures from homogeneity in the initial state are sufficient
to restore DP exponents.
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Il. STATIC (BULK) EXPONENTS 0 40 9 60 80 00
First, recall the coupled circle map latti€&6]: FIG. 1. STI in a synchronously updated coupled circle map
lattice of size L=100 with parametersk=1, »=0.068, ¢,
€ =0.73277. The horizontal axis is the site index1,...L and the
Oitr1=(1=1(6;.1) 2[f(0'_“) f(6i+10] mod 1, vertical axis is discrete time The absorbing regioiiblack has
1 sites at the spatiotemporal fixed point of the system.
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FIG. 3. Log-log plot(basee) of escape timer vs lattice sizeL
for parameter&=1, »=0.068, anda) e=0.639,(b) e=0.638,(c)
€.=0.63775,(d) €e=0.637, ande) ¢=0.635.

5 .
a0 logL, laminar phase

(w,e)=1 L% critical phase

400 expL®, turbulent phase.

Here,c is a constant of order unity and the critical point is
identified as the set of parameter values at whickhows
power-law behavior witlz being the critical exponent.

We compute the above quantities for our CML averaged
over an ensemble of #0nitial conditions. The dependence
of 7on L for different values of is shown on a log-log plot
in Fig. 3. Figure 3 shows this dependence at parameter val-
uesk=1, »=0.068(i.e., at parameter values that correspond
to a unique absorbing statdt is clear from the graph that an
: algebraic increase can be seen at the valuye0.637 75. A
0 20 40 60 80 100 similar analysis was carried out for parameter valkesl,
»=0.064, where a unique absorbing state can again be seen,
and gave the critical value,=0.732 77. Weakly chaotic ab-
sorbing states were seen at parameter vake$8.1, o

300}
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100

FIG. 2. STI in a synchronously updated coupled circle map
lattice of size L=100 with parametersk=3.1, =0.18, €,
=0.701, where the absorbing region has sites be}oamd is not

unique. The horizontal axis is the site indiex1,...L and the ver- =0.18, andw=0.19. Here the critical val_ues of parameters
tical axis is discrete time The top figure is obtained from a density turned out to bee.=0.70100 for the first case ané

plot of the actuab values(the absorbing regions appear darkhe ~ =0.656 12 for the second case. The critical exporzawas
figure below is a coarse grained plot of the abdiack is an  estimated at these critical values for all four cases. The log-
absorbing site and white is an active pne log plot of the escape time against the system siZe is

shown in Fig. 4. It is clear that the same exponerg seen

stitute thhe absorbing stﬁtes, t?nld sites whos'g values afg; 4|l four cases and tumns out to lie in the range 1.58—1.59,
greater thary constitute the turbulent s;atésee igs. @) which is completely consistent with the DP value for this
and 2b)]. So, now the absorbing states arénitely many as exponent(See Table )

also weakly chaotic We study the critical behavior at two . .
" : ; : A _ Figure 5 displays the dependence of the order parameter
critical points in this regime:w=0.18, €=0.701, andw m(e,L,t) on e, around the critical poing. . When the critical

=0.19,=0.656 12. line is approached from above, with other parameters being

As mentioned earlier, we initiate the evolution with ran- held fixed. the order parametaris expected to scale as
dom initial conditions and let the system evolve under par- ’ P P

allel updates. The DP universality class is characterized by a N

set of critical exponents that describe the scaling behavior of m~(e—€)”, e—e . ()

the quantities of physical interest. The physical quantities of

interest for such systems af@ the escape time, which is  Sufficiently close to the critical point, reasonable scaling

the number of time steps elapsed before the system reacheger a limited range can be obtained for our system, even
its laminar state an¢b) the order parameten(e,L,t) which ~ when approaching the critical point from beldtihough this

is the fraction of turbulent sites in the lattice at timdrom is approached extremely slowly, underscoring the difficulty

finite-size scaling arguments, it is expected thelepends on of accurately estimating the critical behavior of stationary

L such that stateq10,19).
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20 — — TABLE |I. Critical static exponents of the synchronously up-
1 dated coupled circle map lattice for four critical points. The first
two critical points correspond to transitions to a unique absorbing

L 4 case, while the third and fourth points correspond to weakly chaotic
15 — absorbing states. The last row shows the corresponding exponents
" 7 of directed percolation.
L @ k 1) € z B v 7'
10

] 1 0.068 0.63775 1.580 0.28 1.10 1.49

log T

1 0.064 0.73277 1.591 0.28 1.10 1.50

I ) i 3.1 0.8 0.70100 1.597 0.26 1.12 150

Ll v vy 3.1  0.19 0.65612 1591 0.28 110 1.49

2 4 6 8 DP 1.58 0.28 1.10 151
log L

FIG. 4. Log-log plot(basee) of escape timer vs lattice sizel
for all four critical points:(a) k=1, w=0.068,e,=0.637 75;(b) k  Power — 3/vz must correspond to the slope of the graph for
=1, w=0.064,€.=0.732 77(when there exists an unique absorb- these regimes. The order parameter is plotted as a function of
ing statg; (c) k=3.1, ©=0.18, €,=0.701 00; andd) k=3.1, w t on log-log plot in Figs. 6 and 7, where the data in Fig. 6 is
=0.19, €.=0.656 12 (with fluctuating absorbing statesTable |  obtained for parameter valuek=1, »=0.068, and e
gives the exponert of the power law fits for the different critical =0.637 75(the unique absorbing state case, and that in Fig.
points. 7 is obtained fork=3.1,) ®=0.19, ande.=0.656 12(the

) case with weakly chaotic absorbing statés both cases, the
Now fort<, the order parameter is expected to obey theyata forl. =50, 100, 300, 500, 1000 collapse on to one line,

scaling relation the slope of which gives- 8/vz=—0.16.
—Blvz The order parameter of systems that belong to the directed
m(ec,L,t)~t . (4) . . . S . :
percolation universality class satisfies the scaling function
Therefore the log-log plots ah as a function of time for
various lattice sizes must fall on one line whiee+ and the m(eg,L,t)~L A"gm (t/L?) (5)
0‘7 _l T 1T I T r 17T I T 1T 1771 I T T T I T T I_ i T 1T ° 1 | T T T 7T LU ' T T 1T ' LI ]
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L ] " T FIG. 5. Plot of order parameter
L i i ] mvs €, around the critical poing,
0.4 v e by e b g by gy v b Lo e s b Ly for the four Cases-(a) k:]_’ )
0625 0.63 0.635 0.64 0.645 072 0725 073 0.735 0.74 =0.068, €,=0.637 75; (b) k=1,
€ € 0=0.064, €.=0.73277; (c) k
LA LI B LU A B BB TT T T T LA LA EULENL AL NLINS B B R R R :31, (1):018, EC:O701, and
0.35 r (d) : (d) k:3.1, w=0.19, €c
=0.656 12. The order parameter

m s calculated for a lattice of size

0.3 L=1000 at timet=5000.
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2 " .
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0.0‘01 0.61 0:| ; 1.0 100
FIG. 6. Log-log(base 10 plot of order parametan(t) vst for !
different lattice sizes at the critical poirt=1, w=0.068, ande, FIG. 8. Log-log(base 19 plot of M=mL#" vs T=t/L* at the
=0.637 75(when there exists a unique absorbing Stafer t<r, critical point: k=1, ®=0.068, ande.=0.637 75(when there exists
the data collapse fdr =50, 100, 300, 500, 1000 onto one line, the @ unique absorbing stateThis rescaling of the order parameter
slope of which gives- 8/vz=—0.16 according to Eq(5) yields independent estimates fétv andz. The
data for system sizeks ranging from 2 to 2%° collapse onto one
at the critical valuee=€.. We plot the order parameter for Curve.
our CML at the critical values above in Figs. 8 and 9. The
data with scaled variable =mL?"” and T=t/L? fall on 1&
one curve for various lattice sizes indicating dynamical scal- Ci(t)= [Z (Ui (1) = (ui(1)?, (7
ing (see Figs. 8 and 9, parameter values are as given in the =t
figure captions This further substantiates the claim that the
behavior of the sine circle map CML falls in the directed
percolation universality class.
The exponenw can be extracted independently, by using
the scaling relation

(L, 60)~¢*f(L/ ), (6)

where the angular brackets denote the averaging over differ-
ent initial conditions. At criticality, one expects an algebraic
decay of correlatiof19]:

Ci(=~j* 7,

wherez' is the associated critical exponent. The log-log plot
of the spatial correlation function &=1, ©»=0.064, €.
=0.73277 can be seen in Fig. 10. The log-log plot of the
correlation function approaches a straight line with slope 1
. — 7' at large times. The value of exponeyit turns out to be
collapse onto a single curve. Thus, the expongrdan be ~1.5, which is consistent with the directed percolation value.

obtained from Eq(5). . . The values of the exponent at the other critical set of param-
To extract further critical exponents, we obtain the corre-

lations from the pair correlation function given by

where ¢ is the correlation length that diverges &s- 6, "
and &, is given bye— e [19]. Therefore,v can be obtained
by adjusting its value till the scaled variables; and 75;”

01 F
0.1

0.01

L L L L
0.001 0.01 0.1 1 10
T

100 1000 10000 100000

FIG. 9. Log-log(base 19 plot of M=mL?"” vys T=t/L? at the
FIG. 7. Log-log(base 10 plot of order parametaen(t) versust critical point: k=3.1, ®=0.19, ande.=0.656 12(when there are
for different lattice sizes at the critical poirk=3.1, »=0.19, and  weakly chaotic absorbing staje¥his rescaling of the order param-
€.=0.656 12(a case with weakly chaotic absorbing staté=or t eter according to E(q5) yields independent estimates {6tv andz.
<, the data collapse fdr=>50, 100, 300, 500, 1000 onto one line, The data for system sizdsranging from 2 to 210 collapse onto
the slope of which gives- B/vz=—0.16. one curve.
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FIG. 10. Log-log plot(basee) of the spatial correlation function ~ FIG. 11. Spreading of two active seeds in an otherwise absorb-
C;(t) vsj at various timest(=100,300,500,1000) at the critical ing lattice of sizeL =100 at critical pointk=1, ©=0.068, €
point: k= 1, ©=0.064, Ec:O.73277.Cj(t) approaches a Straight =0.73277. The horizontal axis is the site mde-xl,...l_ and the

line with slope 1- 5’ for large times indicating an algebraic decay. Vertical axis is discrete time. The absorbing regioriblack is
unique here, with all sites at the spatiotemporal fixed point of the

eter values are listed in Table I. Directed-percolation-like be-SyStem.

havior is observed for the entire set. . . . L

Thus we have obtained theomplete set of static (bulk) ~ FOr k=1, when one starts with a single active site in an
exponentsnamely,z, B, v, 7', that characterize the DP class Otherwise absorbing lattice with all other sites &, the
(see Table )L Clearly, the values of the exponents obtainedSymmetric diffusive coupling will yieldstrictly symmetric
for the coupled circle map lattice are in excellent agreemenieMPoral spreading about the single active site. Further, we
with the DP values for both unique as well as the weaklyf'nd that the system goes to its absorbing state in about ten

chaotic absorbing states. The exponents also satisfy the hjjMme Steps of evolution. Hence, a meaningful scaling cannot
perscaling relation, &/v=d—2+ 7', whered=1. e obtained here. However, using a larger number of active

I1l. SPREADING EXPONENTS 00

In the preceding section we obtained the static exponents
also known as the bulk exponents for our CML, and found 250
that they were in good agreement with those of DP. We shall
now compute a set of dynamical exponents, called the
spreading exponents, from the temporal evolution of a nearly
absorbing system with a localized disturbance, i.e., with only
a few contiguous activéurbuleny sites in an otherwise ab-
sorbing state. The quantities of interest are, the time depen:
dence ofN(t), the number of active sites at tinteaveraged
over all runsP(t), the survival probability, or the fraction of 100
initial conditions that show a nonzero number of active sites
(or a propagating disturbancat timet andR?(t), the mean

200

150

squared deviation from the origin of the turbulent activity
averaged over surviving runs alone. The spreading exponent:
are obtained from the time dependence of these quantities
which show scaling behavior at criticality. At criticality, we
have

R?(t)~t%.

N(t)~t7, P(t)~t?,

50

(0] 3

4

0

20

40

60

80

100

FIG. 12. Spreading of two active seeds in an otherwise absorb-

ing lattice of sizeL=100 at critical pointk=3.1, ®=0.18, ¢,

=0.701. The horizontal axis is the site index1,...L and the
Also, 6= B/vz. We shall now compute these quantities for vertical axis is discrete time The absorbing regiofdark) has all

our system and compare them with those of DP.
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TABLE II. Spreading exponents of the synchronously updated IS S AL A T
coupled circle map lattice for four critical points. Two active seeds —05 "
in an absorbing configuration are used as the initial condition. For L
the first two critical points there exists a unique absorbing state,
while for the third and fourth points one can have many different
absorbing states and consequently many different initial absorbing
backgrounds. However, we notice that the exponents obtained are
quite the same for different initial preparations and thus appear
universal for two active seeds. The last row shows the correspond- 2
ing exponents of directed percolation.

log P(t)

log t
1 0.068 0.63775 0.292 0.153 1.243
1 0.064 0.73277 0.302 0.158 1.259 FIG. 14. Log-log plot(basee) of P(t) vst for all four critical
3.1 0.18 0.70100 0.310 0.157 1.272 points: (@) k=1, @=0.068, €.=0.637 75;(b) k=1, w=0.064, €.
3.1 0.19 0.656 12 0.308 0.156 1251 =0.73277;(c) k=3.1, w=0.18,¢,=0.70100; andd) k=3.1,
DP 0.313 0.159 1.26 =0.19, ¢,=0.656 12. Table Il gives the exponeétof the power

law fits for the different critical points.

sites, placed symmetrically about the spreading center inconstitutes an absorbing background. We find that we can
creases the scaling range considerably and gives better sf2@W obtain reasonable asymmetric spreadingd conse-
tistics. We find that the spreading exponents thus obtaineguently the exponentswith just a single active seed and

are strongly dependent on the initial number of active sitest"€Se exponents are the same as those obtained from spread-
as well as on the actual initial values of the active seeds. FJP9 from two or three contiguous active sitesee Fig. 12
instance, in a lattice of size 1000, spreading from 200 equaft9&in the complete set of spreading exponents agree with
active seeds yields the spreading expongnt0.21, while if those of DP within 3% at all critical pointsee Table Il and

one starts with ten equal active seeds in the same lagite, F19S- 1313 _ .

close to 0.0. Thus, the spreading exponents from strictly NOte, however, that even &t=3.1, if we start with the
symmetric spreading are nonuniversal. very special initial background of all sites at some fixgg,

To counter the strictly symmetric spreading, we need twdghen naturally a single active seed will again spread strictly
or more contiguous random active sitsge Fig. 11in the symmetrically. The exponent obtained from this symmetric
background fixed ag* . We find that the full set of spreading SPréading is nonuniversal and varies "W@b: For instance,
exponents obtained via the expressions above, starting with fbg=0.4, the spreading exponent=0.07; while, if b,
two or more random active seedsee Figs. 13—15agree = 0-0, 7=0.05. According to Refl6] one should not expect
within 3% of the DP valuegsee Table ). This indicates that universal scaling laws for spreading from non-natural initial
universal power laws exist for the case of asymmetricStates. The nonuniversality of the spreading exponents we
spreading in an absorbing background. observe here lends credence to this idea and indicates that

For k=3.1 there is no unique absorbing configuration adhere are no universal power laws when the background is

above, and any initial configuration with values less than homogeneouswhich is non-natural in this parameter re-
gime). However, even a slight breaking of the homogeneity

8 L t r T T _ T T T T L
i (2 15 (a)d
6 - i ]
i (&)1 ~— (o)
= = 10 _
Z 4 :,_-.!!-__,.----——-—-————r/—(C)_ - _
g / : 2 | -
L (d) | - - 1
2 :;unnﬂﬂﬂ-‘__‘—""--‘-“’(’ ] > L (d)]
L 4 Sy 4
0 PRI R EN N WO NN NN SR SR S N 0 L P B R NI A A SRR R i
2 4 6 8 4.5 5 5.5 6

log t log t

FIG. 15. Log-log plot(basee) of R2(t) vs t for all four critical
points: (@) k=1, ®=0.068,€.=0.637 75;(b) k=1, ®=0.064, ¢,
=0.73277;(c) k=3.1, »=0.18,€,=0.701 00; andd) k=3.1, »
=0.19, ¢,.=0.656 12. Table Il gives the exponent of the power
law fits for the different critical points.

FIG. 13. Log-log plot(basee) of N(t) vst for all four critical
points: (a) k=1, ®=0.068,€.,=0.637 75;(b) k=1, ®=0.064, €.
=0.73277;(c) k=3.1, v=0.18,€,=0.701 00; andd) k=3.1, @
=0.19, ¢,=0.656 12. Table Il gives the exponentof the power
law fits for the different critical points.
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of the background, by the introduction of a very small spreadveakly chaotic absorbing states. It is not necessary to intro-

aroundfyg (~10"7), restores the DP universality. duce asynchronicity or an extra dimension to tune out soli-
tonic behavior since no solitonic behavior is seen in this
IV. CONCLUSIONS model. Thus this model constitutes a clean system where DP

exponents are very naturally seen. Nonuniversal spreading

The evaluation of the complete set of static and spreadingxponents can be observed in the case of strictly symmetric
exponents at the onset of spatiotemporal intermittency irspreads obtained from active seeds placed symmetrically in
coupled circle map lattices shows that this transition clearlfhomogeneous backgrounds, but DP exponents are restored if
falls in the universality class of directed percolation. All the the strict symmetry of the spread is broken by slight depar-
critical characteristics of directed percolation, such as hypertures from either the uniformity of the background or the
scaling, are fulfilled, leading to independent controls andsymmetry of active seeds. Model studies such as these,
consistency checks of the values of all the critical exponentsshowing the clean correspondence between the onset of STI
DP exponents are seen at low values of nonlinearity for and directed percolation, could then lead to promising new
unique absorbing state and at high values of nonlinearity focandidates for observing DP in real phenomena.
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