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Evidence for directed percolation universality at the onset of spatiotemporal intermittency
in coupled circle maps
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We consider a lattice of coupled circle maps, a popular model for the study of mode-locked phenomena. We
find that the onset of spatiotemporal intermittency~STI! in this system is analogous to directed percolation
~DP!, with the transition being to a unique absorbing state for low nonlinearities, and to weakly chaotic
absorbing states for high nonlinearities. We find that the complete set of static exponents and spreading
exponents at all critical points match those of DP very convincingly. Further, hyperscaling relations are
fulfilled, leading to independent controls and consistency checks of the values of all the critical exponents.
These results provide an example in support of the conjecture that the onset of STI in deterministic models
belongs to the DP universality class. Nonuniversal spreading exponents are seen only for the cases where the
initial state is homogeneous with symmetrically placed seeds leading to strictly symmetric spreading. However,
very small departures from homogeneity are sufficient to restore the DP exponents.
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I. INTRODUCTION

Spatiotemporal intermittency~STI! in coupled map lat-
tices~CML! has been extensively studied in varied contex
especially as it is the precursor of fully developed spatiote
poral chaos in extended dynamical systems@1#. There are
two types of motion seen in systems exhibiting STI: lamin
and turbulent. The laminar region is characterized by p
odic or even weakly chaotic dynamics, while no spatiote
porally regular structure can be seen in the turbulent regi
A laminar of ‘‘inactive’’ site becomes turbulent or ‘‘active
at a particular time only if at least one of its neighbors w
turbulent at an earlier time, i.e., there is no spontaneous
ation of turbulent sites. Hence a turbulent site can eit
relax spontaneously to its laminar state or contaminate
neighbors@2#. To be more precise, if the propagation rate
turbulence is below a certain threshold, the turbulent sta
die out and the system remains in the laminar state for
time ~laminar phase or inactive phase!. On the other hand, on
exceeding this threshold, the turbulent states start ‘‘perco
ing’’ in space-time~turbulent or inactive phase!. Also, once
all the sites relax spontaneously to its laminar state, the
tem gets trapped in this state for all time. Hence, the lam
state is ‘‘absorbing’’ in STI. The existence of the absorbi
states led to the conjecture by Pomeau that STI in determ
istic models also belongs to the directed percolation~DP!
universality class@3#.

While there is substantial evidence of DP universality
stochastic models exhibiting a continuous transition to
absorbing state@4–6#, it is of considerable interest to exam
ine the robustness of DP critical behavior in systems w
completely deterministic evolution rules. To this end, Chate
and Manneville introduced a simple CML@7# exhibiting STI
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and possessing infinitely many absorbing states. Surprisin
it was found that not only were the exponents governing
onset of STI different from those of DP, they were also no
universal in nature@7#. This nonuniversal behavior was con
sidered to be due to the existence of traveling solitary ex
tations ~solitons! with long lifetimes in this model. In Ref.
@8# it was argued that the existence of these solitons, wh
spoiled the DP nature of the universality class, was a con
quence of the synchronous updating rule and asynchron
updates were tried with this model. This asynchronous
date destroyed the solitons and then the static expon
were found to be consistent with DP exponents@8#. Later it
was also observed that even finite lifetime solitons co
completely change the nature of transition in a weak soli
region @9#. This indicates that it isnontrivial to map deter-
ministic dynamics to stochastic behavioras various spa-
tiotemporal structures~such as these solitons! may introduce
long range correlations, which ruin the analogy@10#. Hence,
it is of considerable interest to find CMLs with regime
where there are no additional special spatiotemporal st
tures, which can be used as clean testbeds for checking
validity of the DP universality class.

Since the state variables of CMLs can often be identifi
with physical quantities~such as, voltage, current, pressu
temperature, concentration, or velocity! in fairly realistic
situations, it is conceivable that such models may sugg
various experimental possibilities for observing DP, whi
still remains an outstanding problem@4#. Further, STI is a
common phenomenon of many extended systems an
seen, for instance, in experiments on convection@11# and in
the ‘‘printers instability’’ @12#. Therefore, if the onset of ST
does in fact exhibit DP universality, then it could lead
promising candidates for observing DP in real phenomena
recent experiment@13# that studies the transition to STI in
one-dimensional system of ferrofluid spikes driven by an
ternal oscillating magnetic field, finds that four of the fiv
measured exponents are in agreement with DP expon
within experimental resolution. We note, however, that t
fifth exponent shows a significant departure from DP beh
©2003 The American Physical Society18-1
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ior, which may be due to the finite size of the apparatus
due to the absence of a true absorbing state. We also note
this is the only experimental system that shows DP ex
nents so far~see Table I in Ref.@13#!.

In the last decade, the Chate-Manneville CML and
variants@9# have been the only class of CML studied exte
sively in this context. Numerical evidence from more vari
sources is required, especially in the absence of analy
results, in order to settle the question of DP universality
transitions occurring in deterministic systems. Thus, it is
considerable interest to be able to find examples of this
respondence in systems quite distinct from the Cha
Manneville class, and with qualitatively different absorbi
states, that would lend credence to the Pomeau conjec
This work provides one such example.

In this paper, we consider the coupled circle map latt
@14# that has been used to model the mode-locking beha
of the type seen in coupled oscillator systems and in dive
experimental systems such as charge density waves
Josephson-Junction arrays@15#. We find that this system ha
regimes that show spatiotemporal intermittency, with b
unique and weakly chaotic laminar regions, at different v
ues of the nonlinearity parameter. Importantly, the solito
that spoilt the DP behavior in the earlier studies@8,9# are
completely absent here. Thus, we have, at hand, a C
without any potentially problematic coherent spatiotempo
structures, showing the onset of spatiotemporal intermitte
very cleanly. This CML can then serve as a good testbed
checking the validity of the DP universality class for bo
unique and fluctuating absorbing states.

We will now present results from this system, whic
strongly indicate that the complete set of static expone
characterizing the transition to STI are completely consis
with DP, both for unique and for weakly chaotic absorbi
states. We will also show that the spreading exponents~dy-
namic exponents! for unique as well as fluctuating absorbin
states agree within 3% of those obtained in DP. Further,
will demonstrate that the hyperscaling relations in case of
static as well as the spreading exponents are also satis
Thus we will provide two distinct examples of clean D
universality in transitions to STI, one of which constitutes
example of this correspondence in a CML with a uniq
absorbing state, and the other constitutes an example of
correspondence when there exists weakly chaotic absor
state.

We also obtain spreading exponents from highly symm
ric initial states where active seed~s! are symmetrically
placed in a homogeneous background. Such initial states
to strictly symmetric spreading and nonuniversal expone
This is consistent with the comment of Grassbergeret al. @6#
that nonuniversal exponents cannot be expected for spr
ing from non-natural initial states. We note that very sm
departures from homogeneity in the initial state are suffici
to restore DP exponents.

II. STATIC „BULK … EXPONENTS

First, recall the coupled circle map lattice@16#:

u i ,t115~12e! f ~u i ,t !1
e

2
@ f ~u i 21,t!1 f ~u i 11,t!# mod 1,

~1!
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wheret is the discrete time index, andi is the site index (i
51,...L), with L being the system size. Parametere gives the
strength of the diffusive coupling between sitei and its two
neighbors. The local on-site map is given by

f ~u!5u1v2
k

2p
sin~2pu!, ~2!

where parameterk gives the nonlinearity. This CML has bee
studied extensively with parallel updates and has a rich ph
diagram with many types of attractors and strong sensitiv
to initial conditions@16,17#. In particular, this system also
has regimes of STI when evolved in parallel with rando
initial conditions. Figures 1 and 2 show space-time plots
the spatiotemporal intermittency observed in two differe
STI regimes. It is clear that no traveling wave solitonlik
structures are seen in this regime. Hence, it is not neces
to introduce any asynchronicity here to destroy ‘‘solitoni
behavior, as this system is naturally free of such spatiote
poral excitations in the parameter region studied here.

We shall now study the onset of spatiotemporal interm
tency in this system. Interestingly, as mentioned before,
qualitatively distinct absorbing regions can be found in t
system.

~i! When the nonlinearity parameterk51, there are re-
gions of (e2v) space where the system goes to the synch
nized spatiotemporal fixed pointu* 51/2p sin21(2pv/k).
This constitutes aunique absorbing state~see Fig. 1!. We
closely scrutinize the critical behavior at two critical poin
in this regime: v50.064, e50.637 75 andv50.068, e
50.732 77. These mark the transition from a laminar ph
to STI. The turbulent sites here are those which are differ
from u* .

~ii ! When nonlinearity parameterk53.1, there are regions
of (e2v) space where sites with any value less than1

2 con-

FIG. 1. STI in a synchronously updated coupled circle m
lattice of size L5100 with parametersk51, v50.068, ec

50.732 77. The horizontal axis is the site indexi 51,...,L and the
vertical axis is discrete timet. The absorbing region~black! has
sites at the spatiotemporal fixed point of the system.
8-2
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EVIDENCE FOR DIRECTED PERCOLATION . . . PHYSICAL REVIEW E67, 056218 ~2003!
stitute the absorbing states, and sites whose values
greater than1

2 constitute the turbulent states@see Figs. 2~a!
and 2~b!#. So, now the absorbing states areinfinitely many, as
also weakly chaotic. We study the critical behavior at tw
critical points in this regime:v50.18, e50.701, andv
50.19,e50.656 12.

As mentioned earlier, we initiate the evolution with ra
dom initial conditions and let the system evolve under p
allel updates. The DP universality class is characterized b
set of critical exponents that describe the scaling behavio
the quantities of physical interest. The physical quantities
interest for such systems are~a! the escape timet, which is
the number of time steps elapsed before the system rea
its laminar state and~b! the order parameterm(e,L,t) which
is the fraction of turbulent sites in the lattice at timet. From
finite-size scaling arguments, it is expected thatt depends on
L such that

FIG. 2. STI in a synchronously updated coupled circle m
lattice of size L5100 with parametersk53.1, v50.18, ec

50.701, where the absorbing region has sites below1
2 and is not

unique. The horizontal axis is the site indexi 51,...,L and the ver-
tical axis is discrete timet. The top figure is obtained from a densi
plot of the actualu values~the absorbing regions appear dark!. The
figure below is a coarse grained plot of the above~black is an
absorbing site and white is an active one!.
05621
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t~v,e!5H logL, laminar phase

Lz, critical phase

expLc, turbulent phase.

Here,c is a constant of order unity and the critical point
identified as the set of parameter values at whicht shows
power-law behavior withz being the critical exponent.

We compute the above quantities for our CML averag
over an ensemble of 104 initial conditions. The dependenc
of t on L for different values ofe is shown on a log-log plot
in Fig. 3. Figure 3 shows this dependence at parameter
uesk51, v50.068~i.e., at parameter values that correspo
to a unique absorbing state!. It is clear from the graph that an
algebraic increase can be seen at the valueec50.637 75. A
similar analysis was carried out for parameter valuesk51,
v50.064, where a unique absorbing state can again be s
and gave the critical valueec50.732 77. Weakly chaotic ab
sorbing states were seen at parameter valuesk53.1, v
50.18, andv50.19. Here the critical values of paramete
turned out to beec50.701 00 for the first case andec
50.656 12 for the second case. The critical exponentz was
estimated at these critical values for all four cases. The l
log plot of the escape timet against the system sizeL is
shown in Fig. 4. It is clear that the same exponentz is seen
for all four cases and turns out to lie in the range 1.58–1.
which is completely consistent with the DP value for th
exponent.~See Table I.!

Figure 5 displays the dependence of the order param
m(e,L,t) on e, around the critical pointec . When the critical
line is approached from above, with other parameters be
held fixed, the order parameterm is expected to scale as

m;~e2ec!
b, e→ec

1 . ~3!

Sufficiently close to the critical point, reasonable scali
over a limited range can be obtained for our system, e
when approaching the critical point from below~though this
is approached extremely slowly, underscoring the difficu
of accurately estimating the critical behavior of stationa
states@10,18#!.

p

FIG. 3. Log-log plot~basee! of escape timet vs lattice sizeL
for parametersk51, v50.068, and~a! e50.639,~b! e50.638,~c!
ec50.63775,~d! e50.637, and~e! e50.635.
8-3
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JANAKI, SINHA, AND GUPTE PHYSICAL REVIEW E67, 056218 ~2003!
Now for t!t, the order parameter is expected to obey
scaling relation

m~ec ,L,t !'t2b/nz. ~4!

Therefore the log-log plots ofm as a function of timet for
various lattice sizes must fall on one line whent!t and the

FIG. 4. Log-log plot~basee! of escape timet vs lattice sizeL
for all four critical points:~a! k51, v50.068,ec50.637 75;~b! k
51, v50.064,ec50.732 77~when there exists an unique absor
ing state!; ~c! k53.1, v50.18, ec50.701 00; and~d! k53.1, v
50.19, ec50.656 12 ~with fluctuating absorbing states!. Table I
gives the exponentz of the power law fits for the different critica
points.
05621
e

power2b/nz must correspond to the slope of the graph
these regimes. The order parameter is plotted as a functio
t on log-log plot in Figs. 6 and 7, where the data in Fig. 6
obtained for parameter valuesk51, v50.068, and ec
50.637 75~the unique absorbing state case, and that in F
7 is obtained fork53.1,) v50.19, andec50.656 12~the
case with weakly chaotic absorbing states!. In both cases, the
data forL550, 100, 300, 500, 1000 collapse on to one lin
the slope of which gives2b/nz520.16.

The order parameter of systems that belong to the dire
percolation universality class satisfies the scaling functio

m~ec ,L,t !;L2b/ngml~ t/Lz! ~5!

TABLE I. Critical static exponents of the synchronously u
dated coupled circle map lattice for four critical points. The fi
two critical points correspond to transitions to a unique absorb
case, while the third and fourth points correspond to weakly cha
absorbing states. The last row shows the corresponding expon
of directed percolation.

k v e z b n h8

1 0.068 0.637 75 1.580 0.28 1.10 1.49
1 0.064 0.732 77 1.591 0.28 1.10 1.50
3.1 0.18 0.701 00 1.597 0.26 1.12 1.50
3.1 0.19 0.656 12 1.591 0.28 1.10 1.49
DP 1.58 0.28 1.10 1.51
r

r

FIG. 5. Plot of order paramete
m vs e, around the critical pointec

for the four cases:~a! k51, v
50.068, ec50.637 75; ~b! k51,
v50.064, ec50.732 77; ~c! k
53.1, v50.18, ec50.701; and
~d! k53.1, v50.19, ec

50.656 12. The order paramete
m is calculated for a lattice of size
L51000 at timet55000.
8-4



r
he

a
t

he
d

ng

re

ffer-
ic

lot

he
1

ue.
m-

e

e,

r

-
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at the critical valuee5ec . We plot the order parameter fo
our CML at the critical values above in Figs. 8 and 9. T
data with scaled variablesM5mLb/n and T5t/Lz fall on
one curve for various lattice sizes indicating dynamical sc
ing ~see Figs. 8 and 9, parameter values are as given in
figure captions!. This further substantiates the claim that t
behavior of the sine circle map CML falls in the directe
percolation universality class.

The exponentn can be extracted independently, by usi
the scaling relation

t~L,dc!'fzf ~L/f!, ~6!

wheref is the correlation length that diverges asf'dc
2n

anddc is given bye2ec @19#. Therefore,n can be obtained
by adjusting its value till the scaled variablesLdc

n andtdc
nz

collapse onto a single curve. Thus, the exponentb can be
obtained from Eq.~5!.

To extract further critical exponents, we obtain the cor
lations from the pair correlation function given by

FIG. 6. Log-log~base 10! plot of order parameterm(t) vs t for
different lattice sizes at the critical point:k51, v50.068, andec

50.637 75~when there exists a unique absorbing state!. For t!t,
the data collapse forL550, 100, 300, 500, 1000 onto one line, th
slope of which gives2b/nz520.16

FIG. 7. Log-log~base 10! plot of order parameterm(t) versust
for different lattice sizes at the critical point:k53.1, v50.19, and
ec50.656 12~a case with weakly chaotic absorbing states!. For t
!t, the data collapse forL550, 100, 300, 500, 1000 onto one lin
the slope of which gives2b/nz520.16.
05621
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Cj~ t !5
1

L (
i 51

L

^ui~ t !ui 1 j~ t !&2^ui~ t !&2, ~7!

where the angular brackets denote the averaging over di
ent initial conditions. At criticality, one expects an algebra
decay of correlation@19#:

Cj~ t !' j 12h8,

whereh8 is the associated critical exponent. The log-log p
of the spatial correlation function atk51, v50.064, ec
50.732 77 can be seen in Fig. 10. The log-log plot of t
correlation function approaches a straight line with slope
2h8 at large times. The value of exponenth8 turns out to be
;1.5, which is consistent with the directed percolation val
The values of the exponent at the other critical set of para

FIG. 8. Log-log~base 10! plot of M5mLb/n vs T5t/LZ at the
critical point:k51, v50.068, andec50.637 75~when there exists
a unique absorbing state!. This rescaling of the order paramete
according to Eq.~5! yields independent estimates forb/n andz. The
data for system sizesL ranging from 24 to 210 collapse onto one
curve.

FIG. 9. Log-log~base 10! plot of M5mLb/n vs T5t/LZ at the
critical point: k53.1, v50.19, andec50.656 12~when there are
weakly chaotic absorbing states!. This rescaling of the order param
eter according to Eq.~5! yields independent estimates forb/n andz.
The data for system sizesL ranging from 24 to 210 collapse onto
one curve.
8-5
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JANAKI, SINHA, AND GUPTE PHYSICAL REVIEW E67, 056218 ~2003!
eter values are listed in Table I. Directed-percolation-like
havior is observed for the entire set.

Thus we have obtained thecomplete set of static (bulk
exponents, namely,z, b, n, h8, that characterize the DP clas
~see Table I!. Clearly, the values of the exponents obtain
for the coupled circle map lattice are in excellent agreem
with the DP values for both unique as well as the wea
chaotic absorbing states. The exponents also satisfy the
perscaling relation, 2b/n5d221h8, whered51.

III. SPREADING EXPONENTS

In the preceding section we obtained the static expone
also known as the bulk exponents for our CML, and fou
that they were in good agreement with those of DP. We s
now compute a set of dynamical exponents, called
spreading exponents, from the temporal evolution of a ne
absorbing system with a localized disturbance, i.e., with o
a few contiguous active~turbulent! sites in an otherwise ab
sorbing state. The quantities of interest are, the time dep
dence ofN(t), the number of active sites at timet averaged
over all runs,P(t), the survival probability, or the fraction o
initial conditions that show a nonzero number of active si
~or a propagating disturbance! at timet andR2(t), the mean
squared deviation from the origin of the turbulent activ
averaged over surviving runs alone. The spreading expon
are obtained from the time dependence of these quanti
which show scaling behavior at criticality. At criticality, w
have

N~ t !'th, P~ t !'t2d, R2~ t !'tzs.

Also, d5b/nz. We shall now compute these quantities f
our system and compare them with those of DP.

FIG. 10. Log-log plot~basee! of the spatial correlation function
Cj (t) vs j at various timest(5100,300,500,1000) at the critica
point: k51, v50.064, ec50.73277.Cj (t) approaches a straigh
line with slope 12h8 for large times indicating an algebraic deca
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For k51, when one starts with a single active site in
otherwise absorbing lattice with all other sites atu* , the
symmetric diffusive coupling will yieldstrictly symmetric
temporal spreading about the single active site. Further,
find that the system goes to its absorbing state in about
time steps of evolution. Hence, a meaningful scaling can
be obtained here. However, using a larger number of ac

FIG. 11. Spreading of two active seeds in an otherwise abs
ing lattice of sizeL5100 at critical pointk51, v50.068, ec

50.732 77. The horizontal axis is the site indexi 51,...,L and the
vertical axis is discrete timet. The absorbing region~black! is
unique here, with all sites at the spatiotemporal fixed point of
system.

FIG. 12. Spreading of two active seeds in an otherwise abs
ing lattice of sizeL5100 at critical pointk53.1, v50.18, ec

50.701. The horizontal axis is the site indexi 51,...,L and the
vertical axis is discrete timet. The absorbing region~dark! has all
sites below1

2 and is not unique.
8-6
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EVIDENCE FOR DIRECTED PERCOLATION . . . PHYSICAL REVIEW E67, 056218 ~2003!
sites, placed symmetrically about the spreading center
creases the scaling range considerably and gives better
tistics. We find that the spreading exponents thus obtai
are strongly dependent on the initial number of active si
as well as on the actual initial values of the active seeds.
instance, in a lattice of size 1000, spreading from 200 eq
active seeds yields the spreading exponenth;0.21, while if
one starts with ten equal active seeds in the same lattice,h is
close to 0.0. Thus, the spreading exponents from stri
symmetric spreading are nonuniversal.

To counter the strictly symmetric spreading, we need t
or more contiguous random active sites~see Fig. 11! in the
background fixed atu* . We find that the full set of spreadin
exponents obtained via the expressions above, starting
two or more random active seeds~see Figs. 13–15! agree
within 3% of the DP values~see Table II!. This indicates that
universal power laws exist for the case of asymme
spreading in an absorbing background.

For k53.1 there is no unique absorbing configuration
above, and any initial configuration with values less tha1

2

FIG. 13. Log-log plot~basee! of N(t) vs t for all four critical
points: ~a! k51, v50.068,ec50.637 75; ~b! k51, v50.064,ec

50.732 77;~c! k53.1, v50.18, ec50.701 00; and~d! k53.1, v
50.19, ec50.656 12. Table II gives the exponenth of the power
law fits for the different critical points.

TABLE II. Spreading exponents of the synchronously upda
coupled circle map lattice for four critical points. Two active see
in an absorbing configuration are used as the initial condition.
the first two critical points there exists a unique absorbing st
while for the third and fourth points one can have many differ
absorbing states and consequently many different initial absor
backgrounds. However, we notice that the exponents obtained
quite the same for different initial preparations and thus app
universal for two active seeds. The last row shows the corresp
ing exponents of directed percolation.

k v e h d zs

1 0.068 0.637 75 0.292 0.153 1.243
1 0.064 0.732 77 0.302 0.158 1.259
3.1 0.18 0.701 00 0.310 0.157 1.272
3.1 0.19 0.656 12 0.308 0.156 1.251
DP 0.313 0.159 1.26
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constitutes an absorbing background. We find that we
now obtain reasonable asymmetric spreading~and conse-
quently the exponents! with just a single active seed an
these exponents are the same as those obtained from sp
ing from two or three contiguous active sites~see Fig. 12!.
Again the complete set of spreading exponents agree
those of DP within 3% at all critical points~see Table II and
Figs. 13–15!.

Note, however, that even atk53.1, if we start with the
very special initial background of all sites at some fixedubg ,
then naturally a single active seed will again spread stric
symmetrically. The exponent obtained from this symmet
spreading is nonuniversal and varies withubg . For instance,
if ubg50.4, the spreading exponenth50.07; while, if ubg
50.0, h50.05. According to Ref.@6# one should not expec
universal scaling laws for spreading from non-natural init
states. The nonuniversality of the spreading exponents
observe here lends credence to this idea and indicates
there are no universal power laws when the backgroun
homogeneous~which is non-natural in this parameter re
gime!. However, even a slight breaking of the homogene

FIG. 14. Log-log plot~basee! of P(t) vs t for all four critical
points: ~a! k51, v50.068,ec50.637 75; ~b! k51, v50.064,ec

50.732 77;~c! k53.1, v50.18, ec50.701 00; and~d! k53.1, v
50.19, ec50.656 12. Table II gives the exponentd of the power
law fits for the different critical points.

FIG. 15. Log-log plot~basee! of R2(t) vs t for all four critical
points: ~a! k51, v50.068,ec50.637 75; ~b! k51, v50.064,ec

50.732 77;~c! k53.1, v50.18, ec50.701 00; and~d! k53.1, v
50.19, ec50.656 12. Table II gives the exponentzs of the power
law fits for the different critical points.

d
s
r

e,
t
g
re

ar
d-
8-7



a

in

rl
e
e
n
nt
r
fo

tro-
oli-
his
DP

ding
tric

y in
ed if
ar-

he
ese,
STI
ew

JANAKI, SINHA, AND GUPTE PHYSICAL REVIEW E67, 056218 ~2003!
of the background, by the introduction of a very small spre
aroundubg (;1024), restores the DP universality.

IV. CONCLUSIONS

The evaluation of the complete set of static and spread
exponents at the onset of spatiotemporal intermittency
coupled circle map lattices shows that this transition clea
falls in the universality class of directed percolation. All th
critical characteristics of directed percolation, such as hyp
scaling, are fulfilled, leading to independent controls a
consistency checks of the values of all the critical expone
DP exponents are seen at low values of nonlinearity fo
unique absorbing state and at high values of nonlinearity
.
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weakly chaotic absorbing states. It is not necessary to in
duce asynchronicity or an extra dimension to tune out s
tonic behavior since no solitonic behavior is seen in t
model. Thus this model constitutes a clean system where
exponents are very naturally seen. Nonuniversal sprea
exponents can be observed in the case of strictly symme
spreads obtained from active seeds placed symmetricall
homogeneous backgrounds, but DP exponents are restor
the strict symmetry of the spread is broken by slight dep
tures from either the uniformity of the background or t
symmetry of active seeds. Model studies such as th
showing the clean correspondence between the onset of
and directed percolation, could then lead to promising n
candidates for observing DP in real phenomena.
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