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Random coupling of chaotic maps leads to spatiotemporal synchronization
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We investigate the spatiotemporal dynamics of a network of coupled chaotic maps, with varying degrees of
randomness in coupling connections. While strictly nearest neighbor coupling never allows spatiotemporal
synchronization in our system, randomly rewiring some of those connections stabilizes entire netwdrks at
wherex* is the strongly unstable fixed point solution of the local chaotic map. In fact, the smallest degree of
randomness in spatial connections opens up a window of stability for the synchronized fixed point in coupling
parameter space. Further, the couplégg at which the onset of spatiotemporal synchronization occurs, scales
with the fraction of rewired sitep as a power law, for 0& p<1. We also show that the regularizing effect of
random connections can be understood from stability analysis of the probabilistic evolution equation for the
system, and approximate analytical expressions for the rangegndre obtained.
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[. INTRODUCTION is chosen to be the fully chaotic logistic maj(x)=4x(1
—X). This map has widespread relevance as a prototype of

The coupled map latticdCML) was introduced as a low dimensional chaos.
simple model capturing the essential features of nonlinear Now we will consider the above system with its coupling
dynamics of extended systerfs|. Over the past decade re- connections rewired randomly in varying degrees, and try to
search centered around CML has yielded suggestive concegdetermine what dynamical properties are significantly af-
tual models of spatiotemporal phenomena, in fields rangindgected by the way connections are made between elements.
from biology to engineering. In particular, this class of sys-In our study, at every update we will connect a fractpaf
tems is of considerable interest in modeling phenomena asndomly chosen sites in the lattice, to two other random
diverse as Josephson junction arrays, multimode lasers, vasites, instead of their nearest neighbors as in(Eq.That is,
tex dynamics, and even evolutionary biology. The ubiquitywe will replace a fractionp of nearest neighbor links by
of distributed complex systems has made the CML a focus ofandom connections. The case @0 corresponds to the
sustained research interest. usual nearest neighbor interaction, whie=1 corresponds

A very well studied coupling form in CMLs is nearest to completely random coupling—7].
neighbor coupling. While this regular network is the chosen This scenario is much like small world networks at lpw
topology of innumerable studies, there are strong reasons twamely, p~0.01. Note, however, that we explore the full
revisit this fundamental issue in the light of the fact thatrange ofp here. In our work 8sp<1. So the study is inclu-
some degree of randomness in spatial coupling can be clossive of, but not confined to, small world networks.
to physical reality than strict nearest neighbor scenarios. In
fact, many systems of biological, technological, and physical
significance are better described by randomizing some frac-
tion of the regular link§2-7]. So here we will study the We will now present numerical evidence that random re-
spatiotemporal dynamics of CMLs with some of its couplingwiring has a pronounced effect on spatiotemporal synchroni-
connections rewired randomly, i.e., an extended system comration. The numerical results here have been obtained by
priZEd of a collection of elemental dynamical units with Samp"ng a |arge set of random initial conditions _’(04),
varying degrees of randomness in its spatial connections. and with lattice sizes ranging from 10 to 1000.

Specifically, we consider a one-dimensional ring of Figures 1 and 2 display the state of the netwotk(i),
coupled logistic maps. The sites are denoted by integersj=1 . N, with respect to coupling strength for the limit-
=1,...N, whereN is the linear size of the lattice. On each |ng cases of nearest neighbor interacti@ihe_, p= O) and
site is defined a continuous state variable denoted fy), completely random coupling.e., p=1). It is clearly seen
which corresponds to the physical variable of interest. Thehat the standard nearest neighbor coupling does not yield a
evolution of this lattice, under standard nearest neighbor inspatiotempora| fixed point anywhere in the entire Coup”ng

II. NUMERICAL RESULTS

teractions, in discrete time is given by range G<e<1 [8].
Now the effect of introducing some random connections,
€ . ) . ?
X = (1= ) FIx (i) T+ = Ix(i+ 1)+ X (i — 1)V, i.e., p>0, is tocreate windows in parameter space where a
n+1()= (A=D1 5 DI+ 1) +xa(i ~ 1)} spatiotemporal fixed point state gains stabilitye., where

(1) one finds all lattice sites synchronizedxa(i)=x* = 3/4, for
all sitesi and at all times. Note thatx* = f(x*) is the fixed
The strength of coupling is given by The local on-site map point solution of the individual chaotic maps, and is strongly
unstable in the local chaotic map. We then have forpall
>0, a stable region of synchronized fixed points in the pa-
*Email address: sudeshna@imsc.ernet.in rameter intervalg,; < e<1.0. The value ok, where the
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FIG. 1. Bifurcation diagram showing values ®f(i) with re-
spect to coupling strengté for coupled logistic maps with strictly
regular nearest neighbor connections. Here the linear size of the
lattice isN=100 and in the figure we plot,(i) (i=1,...,100) over
n=1,...,5 iterationgafter a transience time of 100fbr five differ-
ent initial conditions. FIG. 3. The stable rangR with respect to the fraction of ran-
domly rewired sitep (0.00l=p=<1). The solid line displays the

tiot IV i iant stat ts is d d i analytical result of Eq(7), and the different points are obtained
spatiotemporally Invariant state onsets, Is dependernt from numerical simulations over several different initial conditions,

is evident from Fig. 2 thaty, for completely random cou-  ¢o four different lattice sizes, nameljy=10, 50, 100, and 500.

pling p=1 is around 0.62. The dotted line show® =p, and it is clear that for a large range of
The relationship between the fraction of rewired connecyp the approximation holds.

tions p and the rangeR=(1-e€,5), within which spa-
tiotemporal homogeniety is obtained, is displayed in Fig. 3.
It is clearly evident that unlike nearest neighbor coupling,
random coupling leads to large parameter regimes of regular
homogeneous behavior, with all lattice sites synchronized — :
exactly atx(i)=x*=0.75. Furthermore, the synchronized 0 I n
spatiotemporal fixed point gains stability over some finite r
parameter range undemy finite p, i.e., wheneverp>0, i
however small, we hav&>0. In that sense strictly nearest i
neighbor coupling is singular as it does not support spa- "
tiotemporal synchronization anywhere in coupling parameter =01
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A N N IR IR I FIG. 4. Thee (i.e., the value of coupling at which the onset of
05 06 07 08 09 1 spatiotemporal synchronization occuwsith respect to fraction of
coupling strength e randomly rewired sitep (0.001<p=<1). The solid line displays the
FIG. 2. Bifurcation diagram showing values rf(i) with re- analytical result of Eq(6), and the points are obtained from nu-
spect to coupling strength for coupled logistic maps with com- merical simulations over several different initial conditions, for four
pletely random connections. Here the linear size of the lattice iglifferent lattice sizes, nameljy=10, 50, 100, and 500. The inset
N=100 and in the figure we plok,(i) (i=1,...,100) overn box shows a blow up of 04 p=<1. Here the numerically obtained
=1,...,5 iterationgafter a transience time of 10Dfr five different e, deviates from the mean field results. The dashed line is the best
initial conditions. fit straight line for the numerically obtained points in that region.
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space, whereas any degree of randomness in spatial coupling
connections opens up a synchronized fixed point window.
Thus random connections yield spatiotemporal homogeneity
here, while completely regular connections never do.
The relationship betweegy, , the point of onset of the
spatiotemporal fixed phase, apds shown in Fig. 4. Note
that for p<<0.1 random rewiring does not affeet;; much.
Only after p~0.1 doese;, fall appreciably. Further, it is
clearly evident that for 0& p<1 the lower end of the sta-
bility range falls with increasing as a well defined power
law. Note that lattice size has very little effect eg),, and
the numerically obtained,;, for ensembles of initial random
initial conditions over a range of lattice sizhs=10, 50, 100,
and 500 fall quite indistinguishably around each other. For stability considerations one can diagonalize the
The rob_ust spatiotempqral_ fixed po”?t. supported by aNabove expression using a Fourier transforph,(j)
dom.coupllng may have S|gn|f|cant ramifications. It has .'m'=2q¢n(q)exp6jq), whereq is the wave number arjis the
mediate relevance to the important problem of controllmg/site index, which finally leads us to the following growth
synchronizing extended chaotic systefi®,11]. Obtaining equation:’
spatiotemporal synchronization by introducing some random
spatial connections may have practical utility in the control b1
of large interactive systems. The regularizing effect of ran- b
dom coupling may then help to devise control methods for
spatially extended interactive systems, as well as suggesiith q going from 0 tow. Clearly the stabilization condition
natural regularizing mechanisms in physical and biologicalyill depend on the nature of the local méfx) through the
systems. term f'(x) in Eq. (4). Considering the fully chaotic logistic
map withf’ (x*)= —2, one finds that the growth coefficient
that appears in this formula is smaller than one in magnitude
if and only if

o 2(1) = (1= F (<) + (1= ) 5 {ho( +1)
Fhoi =D} +P 2 {Ny(8) +ho( )}

%(1—6)f’(x*)hn(i)+(1—P)g{hn(j +1)

+ha(j— D)}, 3

as to a first approximation one can consider the sum over the
fluctuations of the random neighbors to be zero. This ap-
proximation is clearly more valid for smatl

=f'(x*)(1—€)+ e(1—p)cosq, 4

IIl. ANALYTICAL RESULTS

We shall now analyze this system to account for the much
enhanced stability of the homogeneous phase under random
connections. The only possible solution for a spatiotempo-
rally synchronized state here is one wherexg(i) =x*, and  i.e.,
x* =f(x*) is the fixed point solution of the local map. For
the case of the logistic may* =4x* (1—x*)=3/4.

To calculate the stability of the lattice with all sites)dt
we will construct araverage probabilistic evolution rulfor o
the sites, which becomes a sortraan field version of the @nd the range of stabilitR is
dynamics Some effects due to fluctuations are lost, but as a 1 p
first approximation we have found this approach qualita-
tively right, and quantitatively close to the numerical results
as well.

We take into account the following: all sites have prob-
ability p of being coupled to random sites, and probability
(1—p) of being wired to nearest neighbors. Then the aver-
aged evolution equation of a sitas

1
—<e<1,

1+p )

1

Epify = Trp (6)

)

For smallp (p<1) standard expansion gives

R~p. (8)

The usual case of regular nearest neighbor couplipgs,
=0, gives a null range, as the upper and lower limits of the
range coincide. When all connections are random, pe.,
=1 the largest stable range is obtained, and the lower end of
the stable windowey, is minimum, with ey, = 1/2. So sta-
bility analysis also clearly dictates that enhanced stability of
the homogeneous phase must occur under random connec-
tions, just as numerical evidence shows.

Figure 3 exhibits both the analytical expression of &q.
and the numerically obtained points for comparison. It is
where ¢ and  are random integers between 1 axid clear that for smalp the numerically obtaine®~p is in

To calculate the stability of the coherent state, we perforncomplete agreement with the analytical formula. But for

Xn+1(j):(1_5)f[xn(j)]+(1_p)g{xn(j +1)+Xa(j = 1)}

D5 (Xal &) +Xnl ), @

the usual linearization. Replacing(j)=x* +h,(j), and ex-
panding to first order gives

higherp some deviation is discernable, as the ignored effect
of the fluctuating contributions from random neighbors is
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weighted byp, and hence more pronounced for laggédHere
the numerically obtained result goes as

evir~P~ %, 9

for 0.1<p=<1, with $~0.2 (see Figs. 4 and)7 ~ 0

Note that wherp< 0.1 the effect orey;, is not significant. t
Only when 0.K p=<1 doese, fall appreciably. So connect-
ing elements in a small world network is not sufficient to
make much difference to the onset of the stable spatiotem-
porally synchronized sta{@].

T T T T ]

x, (i),

IV. RESULTS FROM OTHER MODELS NN AN AN A I ST

_ o ) 0.5 0.6 0.7 0.8 0.9 1
In order to examine the range of applicability of this phe- coupling strength e

nomena we have examined coupled tent maps and coupled FIG. 5. Bifurcation diagram showing values wf(i) with re-
sine circle maps as _Wel!' In the case of coupled tent maps tmepect to coupling strengtla, for coupled sine circle maps with
local map in Eq(1) is given as strictly regular nearest neighbor connections. Here the linear size of
f(x)=1-2|x—1/2. (10) the lattice isSN=100 and in the figure we plot,(i) (i=1,...,100)
overn=1,...,5 iterationgafter a transience time of 10Dfor five
The tent map has an unstable fixed pointxat=2/3, with ~ different initial conditions.
local slopef’(x*)=—2. For coupled circle map networks

the local map in Eq(1) is given as stability can only be as large as 1, i.e., if and only if the local
components possess stable fixed points can their network be
fex+O— ﬁsin(wa) (11) stabilized at spatiotemporal fixed points, as numerics have
2w already shown.

Lastly, in certain contexts, especially neuronal scenarios,
and Eq. 1 is taken mod 1. In the representative exampléhe randomness in coupling may &tic. In the presence of
chosen here the parameters of the circle map(ae0, K such quenched randomness in the couplings, once again one
=3. Here too the local map has a strongly unstable fixedbtains a stable range for spatiotemporal synchronization.
point atx* = (1/2m)sin” (Q/K), with f'(x*)=—2. Numer-  But unlike dynamical rewiring, where th& is independent
ics very clearly show that both these systems yield the samef the size and initial preparation of the lattice and its con-
phenomena as logistic maps, namely, one obtains a stabifections, here there is a spread in the value® afbtained
range for spatiotemporal synchronization on random rewirfrom different (statid realizations of the random connec-
ing (see Figs. 5 and 6 for the limiting casesp#0 andp  tions. Furthermore, this distribution & is dependent on the
=1 in coupled circle maps size of network. For instance, on an average, networks of

Since thef’(x*) of both the tent map and the circle map size N=10 with fully random static connectionsp 1)
above is—2, we expect from our analysi&q. (4)] that their  yield e,~0.75 and those of sizH= 100 yield ey~ 0.85,
enir and R will be the same as for logistic maps. This is
indeed exactly true, as is evident from Fig. 7 that displays the
point of onset of spatiotemporal synchronization for all three
cases. In fact, the numerically obtaineg;, values for en-
sembles of coupled tent, circle, and logistic maps fall indis-
tinguishably around each other, even for highwvhere Eq.

(4) is expected to be less accurate.

Additionally, one can infer from the stability analysis
above, how strongly unstable the local maps can possibly be
while still allowing random connections to stabilize the spa-
tiotemporal fixed point. From E@4) it follows that the onset
of spatiotemporal regularity is governed by the condition

LN L L L O L B
2 x

b s b b by 1

|f!(x*)|<176+6p:1+ €p (12) e o b b b e Lo
1-e€ 1-€’ 0.5 0.6 0.7 0.8 0.9 1
coupling strength e
Clearly then, locally unstable maps witff (x*)|>1 can be FIG. 6. Bifurcation diagram showing values ®f(i) with re-

stabilized by any finitep, i.e., by any degree of randomness gpect to coupling strength for coupled sine circle maps with com-
in the coupling connections. As coupling strengtnd frac-  pletely random connections. Here the linear size of the lattice is
tion of rewiring p increases, maps with increasingly unstableN=100 and in the figure we plok,(i) (i=1,...,100) overn
fixed points can be synchronized stably by random rewiring=1,...,5 iterationgafter a transience time of 10pfbr five different

For regular coupling f=0) on the other hand the local in- initial conditions.

016209-4



RANDOM COUPLING OF CHAOTIC MAPS LEADS TO. .. PHYSICAL REVIEW 66, 016209 (2002

O 6 T 1 17 71 ‘ 1T 17 ‘ T T 1 [ T 11 Ii
~0.05 T 1
07 k
A L ]
. 0.1 & 08 -~
= \Y L i
)
w —_ L .
) 2 -09 —
" oy L ]
& -0.15 = - §
B -1r -
L I | i | I [ L1 | | | | S I J
—02 1 1.5 2 2.5 3
L log , ( N)
— 1 ‘ ! 1 1 | 1 L ‘ i 1 1 | ]
08 0.4 ~02 0 FIG. 8. Plot of the average stable ran@e) of spatiotemporal
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averageR over 10 different realizations of static random connec-
tions. The solid line shows the best fit line to the numerically ob-
tained data, indicating clear scaling.

FIG. 7. Plot ofey;; (i.e., the value of coupling at which the onset
of spatiotemporal synchronization occuwsith respect to fraction
of randomly rewired sitep (0.2<p<1). The points are obtained
from numerical simulations over several different initial conditions,
for lattice sizeN=50, for the case of coupled tent mafgpen
squarey coupled circle mapéopen trianglels and coupled logistic  this distribution is broad and has less negative averéges
maps(open circles The solid line displays the best fit straight line —1). On the other hand, for larghl the distribution gets
for the numerically obtained points. narrower and tends towards the limiting value-e2. This

results in a larger range of stability, and greater spreag;in

for small networks. In fact, for smal, certain static real-
as opposed t@,,~0.62 obtained for alN for dynamically  izations yield a larger range of stabilityR(~1/2) than dy-
updated random connections. Figure 8 displays the averag@mic rewiring.
range(R) with respect to network sizH, indicative of clear
scaling behavior, V. CONCLUSIONS
(R)=N"", (13 In summary then, we have shown that random rewiring of
with »~0.24. This suggests that the range narr@lewly ~ Spatial connections has a pronounced effect on spatiotempo-
with increasing network size. So, while in the limit of infinite ral synchronization. In fact, strictly nearest neighbor cou-
lattices there will be no spatiotemporal synchronization, forling is not generic, in that it does not support any spatiotem-
finite networks static randomness will lead to stable windowgPoral fixed point phase, while the smallest degree of random
of spatiotemporal synchronization. rewiring has the effect of creating a window of spatiotempo-

This behavior can be understood by examining the lineafal invariance in coupling parameter space. Further, the regu-
stability of the homogeneous solution;(j) =x* for all sites larizing effect of random connections can be understood
j at all timesn. For instance, for the case of fully random from stability analysis of the probabilistic evolution equation
static connectionp=1, considering the dynamics of small for the system, and approximate analytical expressions for
perturbations over the network one obtains the transfer mghe range and onset of spatiotemporal synchronization have
trix connecting the perturbation vectors at successive timeBeen obtained. The key observation thahdom coupling
to be a sum of aNXN diagonal matrix, with entries (1 rlegularlzesnay.then hglp to devise control methods for spa-
—€)f'(x*), and (6/2)C whereC is aNx N sparse nonsym- tially ex_te_nded interactive systems, as well as suggest natural
metric matrix with two random entries of 1 on each row. 'égularizing mechanisms in physical and biological systems.
Now the minimum of the real part of the eigenvalues(yf
Amin, crucially governs the stability. Typicallgyi;, = 24\ min
+4} when f’(x*)=—2. Now the values oh,, obtained
from different static realizations of the connectivity mat@ix I would like to thank Neelima Gupte for many stimulating
are distributed differently for different size¢. For smallN  discussions and ideas on the subject.
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