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Parallel computing with extended dynamical systems
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We discuss the scope of parallelism based on extended dynamical systems, in particular, arrays of chaotic
elements. As a case study we demonstrate the rapid solution of the Deutsch-Jozsa problem, utilizing the
collective properties of such systems.
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[. INTRODUCTION functions possible, each corresponding to a distinct output
sequence of 0's and 1's. Specifically, the number of balanced
The controlled computational capability of networks of functions for ak-bit DJ problem is given by straightforward
chaotic elements was demonstrated recently with the directombinatorics to beCy,,=N!/(N—N/2)!(N/2)!, whereN
and flexible implementation of fundamental logic and arith-= 2%, sinceN/2 out of N strings map to 0 and the rest to 1.
metic operation§1,2]. The general strategy in these efforts In the case ok=3, i.e., N=8, there areC$=70 balanced
was to investigate the opportunities provided by nonlineafunctions.
dynamics to build an effective computing medium, exploit- The problem posed by Deutsch-Jozsa was to determine
ing the determinism of dynamics on one hand, and its richfrom a sequence of outputs whether the function generating
ness and complexity on the other. Here we will discuss théhe outputs was constant or balan¢8# The computational
scope of dynamics-based parallelism. As a case study, waffort i.n.solving this problem can be put as f_ollows: What is
will attempt the rapid solution of the Dentsch-Joz&) the minimum number of function calls required befqre you
problem [3], utilizing collective dynamical properties of &ré sure if you havc_a a constant or a balanced function? Th(_a
strongly nonlinear extended systems. s?a_lr_wdard ma_th_emgitlcal theory thqt is used to study _the possi-
bilities and limitations of computing, based on Turing ma-

The rapid solution of the Deutsch-Jozsa problem by quan hines(which be vi d bstract model of today’
tum methods was one of the first dramatic demonstrations o(f Inesiwhich can be viewed as an abstract model of today's

the power of quantum computing. In this work, we will uti- computergwould solve the problem by executitify repeat-

. : . : . edly to obtain the values of sufficiently many outputs in or-
lize collective properties of extended nonlinear dynamical y Y y outp

. . . ~der to determine the class of function with certainty. In the
systems to reduce computational effort in the solution of th|§NOrst case, for instance, where the fiks2=25"1 outputs
benchmark problem. We first review the problem below. re 0 and tr,1e nest/2 out[;uts are 1, a Turing machine would

The Deutsch-Jozsa problem can be stated as follows. L% '

U. be a device that computes a functibrGiven an inpui ke X~ 1+1 tries to obtain the first output of 1. Hence to
f Vi pu u v input, deduce the function class with certainty, one can need up to

t%;n‘g\gll’tﬁétec:assgrgi ctI(;nrr?F;uci;:iF()) L:]tatlrlzsvkzl'j:ﬁ;z .islrl)giﬁgecrilnsi q2"*1+1 function calls. The difficulty in solving this prob-
’ . . ; S em using a standard Turing machine then grows exponen-
ered here involves being givesy and then using it to deter- 9 g g P

. 4 . . : tially with the number of bits in the input string.
mine some propert[ f] in the shortest possible impG is 'Iyreating this DJ problem as a caSe studyghere we will
some function of the sequené€0),f(1), ... ] '

| icul ider & diait bi | iabld indicate in general the parallelized problem solving conceiv-
o n part!cu ar% ;:on5|H(er ith Igit oinary mtegerhvarla_ & able with extended complex systems. The general strategy of
|.e.,ka str|.ng 0 engt .W't entries 0 or 1. T e gntlrel using extended systems for parallelizing tasks employs ar-
=2 possible combinations of 0’s and 1's are valid inputs for

X NPT ) S rays of dynamical systems, with the size of the array being
the function. The functiorf(i) is defmiad on this-bit do-  yatermined by the number of synchronous subtasks the pri-
main space to a 1-bit range spdd¢x) =10,1]. Generally, mary task can be broken into. This is a general form of

there are #=22" functions from theN strings to{0, 1, since parallelism and can be applied to a range of computing ap-
each of theN strings can be mapped to either 0 or 1. Forplications.
example, for k=3, there are N=23=8 strings, 000, The most straightforward way of implementing the DJ
001, ..., 111, and 2=256 functions. Consider two func- problem in this conventional parallelism is to let each device
tions such thatl) f(i)=C is constant for all thé\ possible take one input and return the output, and after all the inputs
input values, i.e., all outputs are 0 or ®) f(i)=B(i) is 0  have been executed in parallel one can combine the outputs
for N/2 input values and 1 for the other half, i.e., the functionby anor operation. If the result is 1, it is balanced; otherwise
is balanced as thld outputs are a sequence of equal numberst is constant.
of 0’s and 1's(in any ordey. One can also conceive of further reduction of computa-
There are only two constant functions possible: one givesional effort in solving the DJ problem, through the observa-
0 for all theN input values; the other gives 1 for all thé  tion of some collective physical property or response of the
input values. There are a large number of different balancedxtended system, i.e., the problem is set up in such a way
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that a collective property directly indicates the “answer” to ments will be right or left of center. In principle then, proba-
the problem, without necessitating individual measurementdilistically speaking, all possible balanced functions can be
We give a few illustrative implementations of this idea ex- attained by the state of the array at different times
plicitly below. Alternatively, we can implement the problem as follows.
The inputs, which are binary strings of lendtha,a,...a,,
Il. LATTICE OF NONLINEAR MAPS can be encoded as binary fractioKslying in the interval
[0, 1]1
Consider, for instance, an array of siZze=N, where each
elementi, i=1,... N, evolves under some suitable map. k
Such an array can yield outputs simultaneously, with each X=0a;aa3...= E ajz—i, 3
output being encoded by the state of an element, e.gjtlthe =1
output is encoded by the sta¥g,(j) of the jth element at
some timen. Thus, this array can processkebit domain ~ Where a; is either 0 or 1. Without loss of generality, we
space(which has # outputs corresponding to thé possible ~ arrange binary numbers in the function domain in increasing
input combinationsconcurrently. sequence. For example, fo= 3 the numbers are arranged as
So each spatial element is a “dynamical device,” the evo-000, 001. .., 111.

lution of whose state is governed by some appropriate iter- The output from each spatial element can be the coarse-
ated mapF of an interval onto itselfX €[ 0,1] specifically. ~ grained first forward iterate of the mapg =F(Xo). If X;
The output is encoded in the state of the element after some& 1/2, U; returns 1; otherwise, the return is 0. That is, the
specified transience time. For instance, one can use the first digit of X; in binary fraction representation determines
following encoding scheme to generate 0's and 1's: when théhe outputf (i), since this is 1 ifX;=1/2 and 0 otherwise.
iterate is left of center, i.eX<1/2, the map returns 0, and Thus we obtain a functiofi(x) from thek-bit domain space

when it is right of center, i.eX=1/2, it returns 1. (Xo=0.a;85...a) to a 1-bit range spac®1} given by the

For the constant functio€ we can have each local map first digit of X;=F(Xp).
given by For the constant functio@ we can again have each local

map given by
Fe(X)=rX, 1)
Fi(X)=rX, (4)

wherer <1.

For allr <1 this system will rapidly evolve exponentially \wherer <1/2.
to the fixed point a* = 0. So the stat& of all elements in For all realizations of thé-bit string (the inputsi), each

the array, which determine§(i), is always ~0. That is  peing encoded as some numbee[0,1], the map withr
Xn(j)=1/2 for all j thus encoding 0. This is equivalent to <1 will exponentially rapidly evolve t&* = 0. Specifically,
obtaining a constant0 in this examplg for all outputs, say, r=2"™ in Eq. (2). Then the action ofF on X

which is the action of the constant function. =3k a.271 vields
. . j=19% y
To implement the balanced function we can use the tent
map k
Fo-m(Xg)=X;=2>, 2,271 "M=0.00...a;a,...a.
Fg(X)=1—2|X—1/2. 2) 2-m(Xo) =X ,2’1 j 192k

5
Since the invariant probability density of the map is flat

and uniform[4], the iterates are equally probable in both Thus the effective action df here is to createn O’s after the
halves. Therefore, starting an array with uniform random ini-binary point for the first dynamical iterate. The first digit of
tial conditions will yield after transience, on average, anany X;, which determined(i), is then always 0 ifm=1,
equal number of 0’s and 1's, as tg(j)’s at anyn will be i.e.,r<1/2. This is equivalent to obtaining a constant O for
equidistributed on the right and left. The state of the array isall inputted strings, which is the action of the constant
dynamically changing and at different times different ele-function.

036214-2



PARALLEL COMPUTING WITH EXTENDED DYNAMICAL . .. PHYSICAL REVIEW E 65 036214

TABLE 1. In general, 2 functions can be generated by the  Thus the dynamics is as follows. The elements of the
functionsF; andF,. Fork=3, i.e,,N=8, this number is 256. The |attice[ Xq(j),j=1, ... N] evolve one forward iterate by,
first column gives the number of 1's obtained from the eightinputsor F,. The state of the lattice after a dynamical step
The balanced function gives half of the eight outputs to be 1 an¢x,(j),j=1,... N] encodes all the outputs simultaneously.
has 70 po_ssible combinations._The first and last entries yield CO”Figure 2 schematically shows the local maps of the array
stant functions, as they have either all 0's or all 1's. implementing the constant function and that implementing
two particular balanced functions. All possible balanced

Number of 1's obtained Combinations possible functions can be obtained this way
0 1 (constant function D If we do not need the values of the individual outpfits)
1 cé=s8 but simply have the task of finding out if any one of them is
2 c8=28 nonzero(as in the DJ problejpwe can employ some collec-
3 cé=56 tive physical property to solve the task. Such measurements
4 C8=70 (balanced function are often reasonably_ easy in exten_ded systems, and_can give
5 c8—s5g the required result directly and rapidly, bypassing ther2
6 C§:28 dividual measurements and subsequaRrtoperation neces-
5 Cﬁs_ 8 sary otherwise.
N , For instance one can observe some mean-field-like prop-
8 1 (constant function JL erty:
1 N
To obtain different balanced functions we evolve the ele- h=—> fIX(i )
g2 HX() ®

mentsX(j), j=1, N through two different nonlinear evolu- j=1

tion function,F; andF, (see Fig. L ) _
When f(X)=X, the value of this mean fieldh

Fi(X)=Fg(X)=1-2|X-1/2 (6) =(1/N)X;X(j) is ~0 for the constant functior€, and is
~% for any one of theCy, distinct balanced functions
and (implemented either via evolution functidfy or via combi-
nations ofF; andF,) [6]. Thus the mean field bears a very
Fo(X)=1-F4(X)=2[X~-1/2. () distinct signature of the two classes of functions, and can be

. . used to decipher, with certainty, which one of the two func-
When F1(X)=1/2 it returns 1, and otherwise returns 0. tions we have.

Wh_e_nF2(|X)>|1/_2 It returnfs 1, and otherwise OH Each of tlhe Note that a coarse estimate of the mean field is adequate
individual evolution map functionsf, andF,, have equal pere since the mean-field values corresponding to the con-
p“’b"?‘?""ty of returning 0 or L for any _ranplom mp(m!tlal stant and balanced classes of functions are so far apart. Thus
condition. The section of the interval yielding 0 1, gives it one designs a device where such mean-field-like quantities
1 for F5, and vice versa. In this sense the functions ar&an pe optainedeven to fairly low precisionvia one direct
compllmentfiry, and cover botr_\ the possibilities, i.e., an 'npUFneasurement, we can bypass thHeirdividual output mea-
state can give an output of either 0 or 1 depending on thg,rements and a subsequamr operation, and obtain the
function chosen. This is evident from Fig. 1. By using such,ggt directly.
complementary functions one can implement allgssible Clearly, noise is not a problem in this implementation
functions, including all possible balanced functions. Tables kand in the implementations listed subsequentjnce the
a_nd Il summarize the combinatorial properties of these funcgcheme involves only coarse-grained quantities. Also, the
tions [5]. evolved state encoding the answer involves very short evo-
_ _lution times(just the first iterate here, for instancand this
_ TABLE Il. The table shows the number of different combina- 5)10\vs fast operations and also ensures that errors do not
tions that generate the different balanced functionskfer3, i.e., expand
N=8, via the complement_ary functions. The fi_rst column gives the In summary, by finding suitable collective properties that
number of elements evolving under the dynamical fiapThe rest bear the clear'and unambiguous signature of the dynamics
of the elements evolve undét,. The second column gives the ~. . . . .

o L S imulating the different cl f functions, an ign-
number of distinct output combinations possible in each ¢eaeh isn l(;:f/ic%st tﬁaqt aﬁo?/v tsﬁ?r?sci)sl’lgcti\llje Ctr(()) Se,rt?esd t?)ybieriga-
yielding a different balanced functiprand they all add up to a total sugred directly, one can reduce computgtio%al offort in the DJ
of 70. ’

class of problems.

Number of elements evolving vig; Combinations possible

Ill. ARRAY OF OPTICAL DEVICES: EXAMPLE OF A

8 L HYBRID APPROACH

6 16

4 36 Hybrid schemes incorporating processors of dimension
2 16 in arrays of length_ yield parallelism of degredL. Here we

0 1 present a specific realistic implementation of a hybrid

scheme, using a set of optical devices, such as a unidirec-
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FIG. 2. The DJ problem for the caselof 3, i.e., =8 inputs, implemented by spatially distributed parallelism. The inputs are encoded

1315317

as binary fractiongvia Eq. (3)] and have values (%

W & 2 8 4 § €encoding 000, 001, 010, 011, 100, 101, 110, 111, respectively. For the

constant function all eight elements, each encoding an input in its initial Gtalieated by the vertical dashed lin@volves via the return
map X;=rX, with rzé here. It is clear that for all the inputs, all the output stateggiven by the intersection of the vertical dashed line
with the rX, line) lie below the horizontal dotted line indicating the value DfSince allX;<1/2, all eight outputs are 0. For the two
balanced functions, on the other hand, the elements evolvé,wid(X;) [given by Eq.(6)] or F,(X,) [given by Eq.(7)], and the inputs

can now giveX,;=1/2 for half the cases. The first balanced funct®ngives an output of 1 for the four inputs: 001, 010, 100, 111, and zero
for the other four whileB, gives output 1 for the four inputs: 100, 101, 110, 111, and O for the others.

tional ring cavity, containing an active medium of two-level grained real and imaginary parts of the evolved sE&ig)
atoms homogeneously broadened and interacting with a ce=a,(j)+ib,(j), j=1,... N/2.

herent electromagnetic wave. The envelope of the electric When the parameters of the devices are arodnd and

field E,, for successive round trips, indexed hyobeys the
mapping[7]:

En+1=A+BE, ex;ii|En|2). C)

B~0.3, the evolution is chaotic, with the states of the differ-
ent unitsk,(j), j=1,N/2, fluctuating wildly from element to
element at any particular snapshot of timesay thea,(j)’s
andb,(j)’s lying above a prescribed cutoff encode an output

The parameteA is proportional to the coherent external field Of 1 and the rest encode 0. The coarse-grained evolved state

andB is an attenuation factor. This map has been observed
hybrid optical bistable devices with delayed feedbgg&lkand

ikn(i), i1=1,N/2, can then yield all possible balanced func-
tions through a suitable choice nfand the cutoff.

also in an all-optical bistable device using a single-mode When parameterA<1 the elements evolve to fixed
optical fiber as a nonlinear medium in a ring cavity pumpedpoints. So all the unitgafter transiencewill have identical

by a train of mode locked puls¢8].
Thus each devicgcan encode the input through its initial
conditionsEg(j). SinceEy(j) is complex valued, it can en-

values. This is the analog of the constant function.
Consider the specific example b£ 3, i.e., =8 inputs.
Since for ak-bit problem one needs*2! devices(as each

code two inputs, one through its real part and anotherdevice processes two inputs simultaneoyslye employ

through its imaginary part. The same scheme of encodinfpur

inputs namely, as a binary fraction, as given in EL, can

be followed. All theN outputs are encoded in the coarse-

optical elements: E,(j)=a,(j) tib,(j), with |
=1,...,4. Theinputs are encoded as initiay(j), and
bo(j), j=1,...,4.Thus, in binary fraction notation, input
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000 givesag(1)=0.000, input 001 giveby(1)=0.001, in- (@
put 010 givesay(2)=0.010, input 100 giveby(2)=0.100, O—> O—> C>_>Q—> open-end ouput
etc.

One can obtain a constant function with system param-
etersA<1, B~0.3. This will give an outputafter short tran-  (®)
sience time¢ to be a(l)=a(2)=a(3)=a(4)=asyeq and O O O O
b(1)=b(2)=b(3)=b(4)=Dbswq.- SO any cutoff greater
than asyeq and byiyeq Will give an output of 0 for allj at all
timesn.

To obtain balanced functions one can set the parameters t open-end ouput
be A=3, B=0.3, which gives a chaotic mapping. For in- (¢

stance, a balanced function can be obtained by the electri O O O O
-

fields at 7=5, Es(j), j=1,...,4, which gives a(1) < /
=3.69476, a(2)=2.09172, a(3)=3.33939, a(4) J
=2.12827, andb(1)=0.39902,b(2)=—0.057 57,b(3)=

—0.58217h(4)=0.28157. The mean value afis 2.813 54 l

and the mean value df is 0.0102. Using the mean as the open-end ouput

cutoff, we have the eight outputs corresponding to the eight

inputs to be 1, 1, 0, 0, 1, 0, 0, 1. Similarly with the state at FIG. 3. Amesh of four threshold coupled elemerits<4): (&)

7=20, one can obtain a balanced function with outputs 1, gSeduentially connected—here the adaptive phase tike$ adap-

0,1, 1,00, 1, etc. five steps;(b) parallel connected—here the adaptive phase takes
Now one can extract a small fraction of the output of eactne adaptive step, as all elements re[ax simultaneously emitting

device and mix it to give a mean field, excess to the open end; a@ connected in a binary tree—here the

adaptive phase takes,IN=2 steps.

N
hHZ%E IE.(D]% (10)  verts to the threshold value spilling the “exces&={x(i)
j=1 —Xx* (i)} over to its nearest neighbor down the array,

whereE,(j) is the electric field of thgth unit. The setup X(i)—x*(i),
could be designed to yield this mean-field output directly, in

which case the above averaged quantity can be obtained X(i+1)—x(i+1)+Z.
through one measurement. . _

After transience, if we measure the mean field of the de- This excess can snowball into an “avalanche” of excess
vices[given by Eq.(9)] we find that for the constant function down the array, in a kind of domino effect, with the cumu-
this mean field is constant in time with values bounded fronfative excess being emitted from the “open end" of the net-
above by 2, while for any balanced function, where the mapWork, i-e., sent outside the system. When an element has
pings are necessarily chaotic, the mean field fluctuates argfatex(i)<x*(i) its state remains at(i), and no interele-
has values bounded from below by 8. So the mean field beaf§ent transfer takes place. . .

a clear and unambiguous signature of the nature of the func- The adaptive phase can be sequential, partially parallel, or
tions. If the mean field has a value of less than 2 this i€ntirely parallel(see Fig. 3 In the case of sequential con-
clearly a constant function, andce versaSo, if the task at nections, the entire adaptive process takEi) adaptive
hand is only to determine whether the function is balanced ofteps. When the elements are connected in parallel, all indi-

constant, one can do this with certainty through one direcyidual leads are wired together to give a collective open-end
measurement of the mean field. readout. Thus, the relaxation of all the elements is simulta-

neous, and the adaptive step is@f1). The clock of the
dynamical system is set by the chaotic update though, since
that time scale is independent of the topology of the connec-

Consider another example of a network $&2N chaotic  tions and threshold settings. The adaptive tinvbich varies
elementsx(1),x(2),...X(N), where each chaotic element for different threshold settings, and topologies of the mesh
has two basic dynamical phadd®,2]. is required to be faster and the adaptive process occurs to

(1) Chaotic update Synchronous global changes from completion between the chaotic updates.
time t to t+1 of the elements in the network. This is gov-  We illustrate this threshold coupled array with a simple
erned by a chaotic evolution map, say, to be specific, thexample. Let us consider two coupled elements, Ne=,2,
logistic map:F(x)=rx(1—x) with r=4, which that maps with thresholds set at*(1)=0.5 andx*(2)=0.25. The in-
interval [0, 1] to itself. put state at time=0 is given ax(1)=0.25,x(2)=0.5. At

(2) Adaptive phaseBetween chaotic updates there is ant=1 chaotic update takes place on those input values and an
adaptive phase that consists of local changes triggered lgdaptive phase follows. At=2 again the next chaotic up-
elements in the network having a statgreater than some date occurs, followed by the adaptive phase, and so on. Table
critical threshold valug*, i.e.,x>x*. When this occurs, the Ill shows step-by-step changes of the system over three units
overcritical element, say thigh elementx(i) relaxes(re-  of time. Output fromx(2) represents the cumulative excess

IV. THRESHOLD COUPLED ARRAY
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TABLE IIl. Step-by-step changes of dd=2 system with two coupled element§l) andx(2), over
three units of time. The thresholds here are set*éf)= 0.5 andx* (2)=0.25. Output fromx(2) represents
the cumulative excess emitted from the open end and is equal to 1.0 for all times for these threshold values.
The states of the individual elementéi) are equal tox* (i) for all times after the first transient step tat

=1.
x(1) Output fromx(1) x(2) Output fromx(2)
t=0; input 0.25 0.5
t=1; chaotic update 0.75 1.0
Adaptive phase 0.5 0.25 1.280.25 1.0
t=2; chaotic update 1.0 0.75
Adaptive phase 0.5 0.5 1.250.25 1.0
t=3; chaotic update 1.0 0.75
Adaptive phase 0.5 0.5 1.250.25 1.0
emitted from the open end. After the transient stepi-ofl, Such an array can yieltll outputs simultaneously, with

the dynamics reaches the steady state, i.e., for each output being encoded by the state of an element in the
=2,3,... ¢, the emitted excess is identical and the states o#rray, i.e., theéth output is coded in the state of umitx(i).

the individual elements before a chaotic update are all aThus this array can processkit domain spacéwhich has
x(i)=x*(i). In fact, this steady-state configuration x(fi) 2% possible inputsconcurrently.

=x*(i) before a chaotic update is obtained for all thresholds The entire output sequence is obtained from the state of

x* <2 after short transiencil0]. this network after transience. We operate in the threshold
<—  Threshold = 3/4
( for elements encoding 0)
Steady state configuration
~— Threshold = 3/8
All elements at threshold value ( for elements encoding 1)
before chaotic update
\‘/ Chaotic Update

Threshold =3/4 _,
( for elements encoding 0)
~<— Threshold = 3/8
( for elements encoding 1)

OUTPUT: 0 1 0 0 0 1 1 1

Adaptive Relaxation \l/ WITH EMISSION OF EXCESS

KEY
B Equalto threshold
B  Above threshold I I I I

FIG. 4. The DJ problem for the caselo£ 3, i.e., Z=8 inputs, implemented by a network of eight threshold coupled logistic maps, with
the state of théth element encoding the output to thé input. To implement different balanced functions, the thresholds of the elements
in the array are setat* (i), i=1, . . .,8, withx* (i) beingx} =3 for half the elementérandomly chosenandx? = 3 for the remaining half.
Here we depict the implementation of a particular balanced function with output sequence 0, 1, 0, 0, 0, 1, 1, 1. Since inputs 2, 6, 7, 8 give
output 1, the elements 2, 6, 7, 8 in the array have threshold sxétraﬁ and the remaining four elements giving output O have thresholds
atxg = %. The steady-state configuration just before a chaotic update has all elements at threshotdiyalu&(i). After chaotic update,
the value ofx of elements 2, 6, 7, 8 i§(3/8)=15/16>x; and so they fire, initiating an avalanche. The elements 1, 3, 4, 5 have states

f(%) = %sxg and so they do not trigger any response. The excess emission from the array at the end of the avalanching process is four units

of excess (1 unit %—§= %). So simply by noting that this array emits excess, we can know with certainty that it is analogous to a
balanced function, since the array for the constant fundtiath all thresholds at lemits no excess at all at any time.
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regionx* < 3/4. For such systems, after transieretich is The rest of theN/2 elements, encoding output 1, can have
usually very shoijtthe array is in a steady-state configura- a threshold set at somg , which will generate large excess
tion, i.e., the configuration at the end of a chaotic update plugmission after a chaotic update. For instance, we can choose
adaptive relaxatiorfi.e., just before the subsequent chaoticxi =3/8, which maximizes the quantityA =f(x7)—xT
update is always the samex(i)=x*(i) for i=1,... N, =4x7(1—-x37)—xj], and generates an excess emission of
wherex* (i) is the threshold for théth element. In such a A= 9/16 from each element. All possible balanced functions

configuration, after a chaotic update the elements that arg&n be obtained by suitably choosing the thresholds ofthe
overcritical in the network, i.e., witli(x*)>x*, encode an elements, and all such arrays will yield an excess emission of

; N/2)A from the open edge.
output of 1. So the elements that trigger a response, o@ If?/ve do not negd the i%dividual output€i), but simply
“fire,” in some sense give output 1. The units that are un-p, X

- . . . ave the task of finding out if any one of them is nonzero, we
dercritical after the chaotic updafee., with f(x*)<x*]en- o just examine the %xcess er>r/1ission from the open end of
code an output of QFig. 4). the array. This collective excess is exactly equal to the num-
To obtain a constant function we simply have to setper of input elements in the array yielding an output dfril
thresholdx* =1 for all the elements. Since the dynamical units ofA). So for all theCy, distinct balanced functions we
values are bounded by 1, no element of this system will thewvill have an excess emission with common vali¢/2)A
ever be over the threshold at any time. So they will neverand this will immediately tell us that there ald2 outputs
“fire,” and consequently always encode 0. The emitted ex-that are 1.
cess is consequently also identically zero. So no emitted ex- Thus, with one measurement of the collective excess we
cess from the system is a signature of a constant function. ¢an deduce Wlth_ certainty whether or not thg network yields
To obtain a balanced function, we have to set half of the2ny one of the innumerable balanced functions, as all bal-
elements(randomly chosento have thresholds? and the ~anced functions will yield an excess of exactly/@)A while
other half to have thresholds; . There areCN,2 ways of the constant func_tlon ylelc_is no excess em'sim
doing this, implementing the different balanced functions. Even under noise the difference in the _collec_t|ve excess of
The elements with thresholdg encode an output of 0, and g".’lrlligchs fgaggggstoagg Ig(r)nstirr]ltesfgnrce;“sorésn;;(strzaAc.:Iearl
those with thresholds} encode 1 Xj ,xi <3/4). As men- I ! ge, b y

. . . C different. Thus, deduction of the class of functions under
tioned before, after short transience this array is in a steady i< is as easily done as in the noise-free case. Such
configuration;x(i)=x* (i) for i=1, ... N, with x*(i) be- )

, < " . schemes may be extended to closely related extended sys-
ing eitherxg or x; . , _ _ tems such as models of sandpile and percolation phenomena.
Now, to obtain output 0, i.e., to not trigger an adaptive |, symmary, we have used extended dynamical systems to
response after chaotic update, we must demandfipet)  optain different strategies for parallelizing the DJ problem.
<x*. So one can set the threshold to ¥&=3/4, or x5 | particular, we have exploited the collective properties of
=0. Sincef(xg)=xg for the cases of botkg =3/4 andxs  such systems to reduce computational effort. The success of
=0 after chaotic update, the elements with thresholdgat these schemes underscores the potential for problem solving
will not be above threshold and consequently cannot start ansing the parallelism inherent in extended dynamical

avalanchd 11]. systems.
[1] S. Sinha and W. Ditto, Phys. Rev. Le&1, 2156(1998. [7] K. Ikeda, Opt. Commur30, 257 (1979; K. lkedaet al, Phys.
[2] S. Sinha and W. Ditto, Phys. Rev.@®, 363(1999. Rev. Lett.45, 709 (1980.
[3] D. Deutsch and R. Jozsa, Proc. R. Soc. London, S&3% [8] H. M. Gibbset al,, Phys. Rev. Lett46, 474(1981); F. A. Hopf
553(1992; R. Cleveet al, ibid. 454, 339(1998. et al, Phys. Rev. A25, 2172(1982.
[4] E. Ott, Chaos in Dynamical Systent€ambridge University [9] H. Nakatsukeet al, Phys. Rev. Lett50, 109 (1983.
Press, Cambridge, England, 1993 [10] S. Sinha and D. Biswas, Phys. Rev. Létt, 2010(1993; S.

[5] There are alternate ways of realizing the different balanced Sinha, Phys. Rev. B9, 4832(1994; Phys. Lett. A199, 365
functions, of course. For instance, instead of the two basic (1995; Int. J. Mod. Phys. B, 875(1995.
functions given in Eqs(6) and(7), one can use combinations [11] Note that these units can “topple” during an avalanche initi-
of the fixed functiond=,=0 andF,=1 to implement the dif- ated by other neighboring units, though.
ferent balanced functions. [12] The other constant function, giving all outputs to be 1, can be
[6] The other constant function, giving all outputs to be 1 can be obtained with equal ease. The collective excess will then have
obtained with equal ease. The mean field then will have a a value~NA. So the difference between the collective excess
value ~1. So the difference between the mean fields of this of this constant function and any balanced function is again
constant function and any balanced function is adain (N/2)A.

036214-7



