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Parallel computing with extended dynamical systems
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We discuss the scope of parallelism based on extended dynamical systems, in particular, arrays of chaotic
elements. As a case study we demonstrate the rapid solution of the Deutsch-Jozsa problem, utilizing the
collective properties of such systems.
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I. INTRODUCTION

The controlled computational capability of networks
chaotic elements was demonstrated recently with the di
and flexible implementation of fundamental logic and ari
metic operations@1,2#. The general strategy in these effor
was to investigate the opportunities provided by nonlin
dynamics to build an effective computing medium, explo
ing the determinism of dynamics on one hand, and its ri
ness and complexity on the other. Here we will discuss
scope of dynamics-based parallelism. As a case study
will attempt the rapid solution of the Dentsch-Jozsa~DJ!
problem @3#, utilizing collective dynamical properties o
strongly nonlinear extended systems.

The rapid solution of the Deutsch-Jozsa problem by qu
tum methods was one of the first dramatic demonstration
the power of quantum computing. In this work, we will ut
lize collective properties of extended nonlinear dynami
systems to reduce computational effort in the solution of t
benchmark problem. We first review the problem below.

The Deutsch-Jozsa problem can be stated as follows.
U f be a device that computes a functionf. Given an inputi,
U f will, after some time, output the valuef ( i ). In general
terms, the class of computational tasks that is being con
ered here involves being givenU f and then using it to deter
mine some propertyG@ f # in the shortest possible time.@G is
some function of the sequencef (0),f (1), . . . .#

In particular, consider ak digit binary integer variablei,
i.e., a string of lengthk with entries 0 or 1. The entireN
52k possible combinations of 0’s and 1’s are valid inputs
the function. The functionf ( i ) is defined on thisk-bit do-
main space to a 1-bit range space@ f (x)5$0,1%#. Generally,
there are 2N522k

functions from theN strings to$0, 1%, since
each of theN strings can be mapped to either 0 or 1. F
example, for k53, there are N52358 strings, 000,
001, . . . , 111, and 285256 functions. Consider two func
tions such that~1! f ( i )5C is constant for all theN possible
input values, i.e., all outputs are 0 or 1;~2! f ( i )5B( i ) is 0
for N/2 input values and 1 for the other half, i.e., the functi
is balanced as theN outputs are a sequence of equal numb
of 0’s and 1’s~in any order!.

There are only two constant functions possible: one gi
0 for all the N input values; the other gives 1 for all theN
input values. There are a large number of different balan
1063-651X/2002/65~3!/036214~7!/$20.00 65 0362
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functions possible, each corresponding to a distinct out
sequence of 0’s and 1’s. Specifically, the number of balan
functions for ak-bit DJ problem is given by straightforwar
combinatorics to beCN/2

N 5N!/(N2N/2)!(N/2)!, where N
52k, sinceN/2 out of N strings map to 0 and the rest to 1
In the case ofk53, i.e., N58, there areC1

8570 balanced
functions.

The problem posed by Deutsch-Jozsa was to determ
from a sequence of outputs whether the function genera
the outputs was constant or balanced@3#. The computational
effort in solving this problem can be put as follows: What
the minimum number of function calls required before y
are sure if you have a constant or a balanced function?
standard mathematical theory that is used to study the po
bilities and limitations of computing, based on Turing m
chines~which can be viewed as an abstract model of toda
computers! would solve the problem by executingU f repeat-
edly to obtain the values of sufficiently many outputs in o
der to determine the class of function with certainty. In t
worst case, for instance, where the firstN/252k21 outputs
are 0 and the nextN/2 outputs are 1, a Turing machine wou
take 2k2111 tries to obtain the first output of 1. Hence
deduce the function class with certainty, one can need u
2k2111 function calls. The difficulty in solving this prob
lem using a standard Turing machine then grows expon
tially with the number of bits in the input string.

Treating this DJ problem as a case study here, we
indicate in general the parallelized problem solving conce
able with extended complex systems. The general strateg
using extended systems for parallelizing tasks employs
rays of dynamical systems, with the size of the array be
determined by the number of synchronous subtasks the
mary task can be broken into. This is a general form
parallelism and can be applied to a range of computing
plications.

The most straightforward way of implementing the D
problem in this conventional parallelism is to let each dev
take one input and return the output, and after all the inp
have been executed in parallel one can combine the out
by anOR operation. If the result is 1, it is balanced; otherwi
it is constant.

One can also conceive of further reduction of compu
tional effort in solving the DJ problem, through the observ
tion of some collective physical property or response of
extended system, i.e., the problem is set up in such a
©2002 The American Physical Society14-1



SINHA, MUNAKATA, AND DITTO PHYSICAL REVIEW E 65 036214
FIG. 1. The two complimentary functionsF1

andF2 .
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that a collective property directly indicates the ‘‘answer’’
the problem, without necessitating individual measureme
We give a few illustrative implementations of this idea e
plicitly below.

II. LATTICE OF NONLINEAR MAPS

Consider, for instance, an array of size 2k5N, where each
elementi, i 51, . . . ,N, evolves under some suitable ma
Such an array can yieldN outputs simultaneously, with eac
output being encoded by the state of an element, e.g., thej th
output is encoded by the stateXn( j ) of the j th element at
some timen. Thus, this array can process ak-bit domain
space~which has 2k outputs corresponding to the 2k possible
input combinations! concurrently.

So each spatial element is a ‘‘dynamical device,’’ the ev
lution of whose state is governed by some appropriate i
ated mapF of an interval onto itself~XP@0,1# specifically!.
The output is encoded in the state of the element after s
specified transience timen. For instance, one can use th
following encoding scheme to generate 0’s and 1’s: when
iterate is left of center, i.e.,X,1/2, the map returns 0, an
when it is right of center, i.e.,X>1/2, it returns 1.

For the constant functionC we can have each local ma
given by

FC~X!5rX, ~1!

wherer !1.
For all r ,1 this system will rapidly evolve exponentiall

to the fixed point atX* 50. So the stateX of all elements in
the array, which determinesf ( i ), is always ;0. That is
Xn( j )<1/2 for all j thus encoding 0. This is equivalent t
obtaining a constant~0 in this example! for all outputs,
which is the action of the constant function.

To implement the balanced function we can use the
map

FB~X!5122uX21/2u. ~2!

Since the invariant probability density of the map is fl
and uniform @4#, the iterates are equally probable in bo
halves. Therefore, starting an array with uniform random
tial conditions will yield after transience, on average,
equal number of 0’s and 1’s, as theXn( j )’s at anyn will be
equidistributed on the right and left. The state of the arra
dynamically changing and at different times different e
03621
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ments will be right or left of center. In principle then, prob
bilistically speaking, all possible balanced functions can
attained by the state of the array at different timesn.

Alternatively, we can implement the problem as follow
The inputs, which are binary strings of lengthk: a1a2 ...ak ,
can be encoded as binary fractionsX lying in the interval
@0, 1#,

X50.a1a2a3 . . . 5(
j 51

k

aj2
2 j , ~3!

where aj is either 0 or 1. Without loss of generality, w
arrange binary numbers in the function domain in increas
sequence. For example, fork53 the numbers are arranged
000, 001, . . . , 111.

The output from each spatial element can be the coa
grained first forward iterate of the mapsX15F(X0). If X1
>1/2, U f returns 1; otherwise, the return is 0. That is, t
first digit of X1 in binary fraction representation determin
the outputf ( i ), since this is 1 ifX1>1/2 and 0 otherwise.
Thus we obtain a functionf (x) from thek-bit domain space
(X050.a1a2 ...ak) to a 1-bit range space$01% given by the
first digit of X15F(X0).

For the constant functionC we can again have each loc
map given by

Fr~X!5rX, ~4!

wherer ,1/2.
For all realizations of thek-bit string ~the inputsi!, each

being encoded as some numberXP@0,1#, the map withr
,1 will exponentially rapidly evolve toX* 50. Specifically,
say, r 522m in Eq. ~2!. Then the action ofF on X
5S j 51

k aj2
2 j yields

F22m~X0!5X15(
j 51

k

aj2
2 j 2m50.000 . . .a1a2 ...ak .

~5!

Thus the effective action ofF here is to createm 0’s after the
binary point for the first dynamical iterate. The first digit o
any X1 , which determinesf ( i ), is then always 0 ifm>1,
i.e., r<1/2. This is equivalent to obtaining a constant 0 f
all inputted strings, which is the action of the consta
function.
4-2
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To obtain different balanced functions we evolve the e
mentsX( j ), j 51, N through two different nonlinear evolu
tion function,F1 andF2 ~see Fig. 1!:

F1~X![FB~X!5122uX21/2u ~6!

and

F2~X!512F1~X!52uX21/2u. ~7!

When F1(X)>1/2 it returns 1, and otherwise returns
WhenF2(X).1/2 it returns 1, and otherwise 0. Each of t
individual evolution map functions,F1 and F2 , have equal
probability of returning 0 or 1 for any random input~initial
condition!. The section of the interval yielding 0 forF1 gives
1 for F2 , and vice versa. In this sense the functions
complimentary, and cover both the possibilities, i.e., an in
state can give an output of either 0 or 1 depending on
function chosen. This is evident from Fig. 1. By using su
complementary functions one can implement all 2N possible
functions, including all possible balanced functions. Table
and II summarize the combinatorial properties of these fu
tions @5#.

TABLE I. In general, 2N functions can be generated by th
functionsF1 andF2 . For k53, i.e.,N58, this number is 256. The
first column gives the number of 1’s obtained from the eight inpu
The balanced function gives half of the eight outputs to be 1
has 70 possible combinations. The first and last entries yield c
stant functions, as they have either all 0’s or all 1’s.

Number of 1’s obtained Combinations possible

0 1 ~constant function 0!
1 C1

858
2 C2

8528
3 C3

8556
4 C4

8570 ~balanced function!
5 C5

8556
6 C6

8528
7 C7

858
8 1 ~constant function 1!

TABLE II. The table shows the number of different combin
tions that generate the different balanced functions fork53, i.e.,
N58, via the complementary functions. The first column gives
number of elements evolving under the dynamical mapF1 . The rest
of the elements evolve underF2 . The second column gives th
number of distinct output combinations possible in each case~each
yielding a different balanced function!, and they all add up to a tota
of 70.

Number of elements evolving viaF1 Combinations possible

8 1
6 16
4 36
2 16
0 1
03621
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Thus the dynamics is as follows. The elements of
lattice@X0( j ), j 51, . . . ,N# evolve one forward iterate byF1
or F2 . The state of the lattice after a dynamical st
@X1( j ), j 51, . . . ,N# encodes all the outputs simultaneous
Figure 2 schematically shows the local maps of the ar
implementing the constant function and that implement
two particular balanced functions. All possible balanc
functions can be obtained this way.

If we do not need the values of the individual outputsf ( i )
but simply have the task of finding out if any one of them
nonzero~as in the DJ problem!, we can employ some collec
tive physical property to solve the task. Such measurem
are often reasonably easy in extended systems, and can
the required result directly and rapidly, bypassing the 2k in-
dividual measurements and subsequentOR operation neces-
sary otherwise.

For instance one can observe some mean-field-like p
erty:

h5
1

N (
j 51

N

f $X~ j !%. ~8!

When f (X)[X, the value of this mean fieldh
[(1/N)SJX( j ) is ;0 for the constant functionC, and is
;1

2 for any one of theCN/2
N distinct balanced functions

~implemented either via evolution functionFB or via combi-
nations ofF1 andF2! @6#. Thus the mean field bears a ve
distinct signature of the two classes of functions, and can
used to decipher, with certainty, which one of the two fun
tions we have.

Note that a coarse estimate of the mean field is adeq
here, since the mean-field values corresponding to the c
stant and balanced classes of functions are so far apart.
if one designs a device where such mean-field-like quanti
can be obtained~even to fairly low precision! via one direct
measurement, we can bypass the 2k individual output mea-
surements and a subsequentOR operation, and obtain the
result directly.

Clearly, noise is not a problem in this implementatio
~and in the implementations listed subsequently!, since the
scheme involves only coarse-grained quantities. Also,
evolved state encoding the answer involves very short e
lution times~just the first iterate here, for instance! and this
allows fast operations and also ensures that errors do
expand.

In summary, by finding suitable collective properties th
bear the clear and unambiguous signature of the dynam
simulating the different classes of functions, and by desi
ing devices that allow such collective properties to be m
sured directly, one can reduce computational effort in the
class of problems.

III. ARRAY OF OPTICAL DEVICES: EXAMPLE OF A
HYBRID APPROACH

Hybrid schemes incorporating processors of dimensiod
in arrays of lengthL yield parallelism of degreedL. Here we
present a specific realistic implementation of a hyb
scheme, using a set of optical devices, such as a unid

.
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SINHA, MUNAKATA, AND DITTO PHYSICAL REVIEW E 65 036214
FIG. 2. The DJ problem for the case ofk53, i.e., 2358 inputs, implemented by spatially distributed parallelism. The inputs are enc
as binary fractions@via Eq. ~3!# and have values 0,18,

1
4,

3
8,

1
2,

5
8,

3
4,

7
8 encoding 000, 001, 010, 011, 100, 101, 110, 111, respectively. Fo

constant function all eight elements, each encoding an input in its initial state~indicated by the vertical dashed line!, evolves via the return
mapX15rX0 with r 5

1
8 here. It is clear that for all the inputs, all the output statesX1 ~given by the intersection of the vertical dashed li

with the rX0 line! lie below the horizontal dotted line indicating the value of1
2. Since allX1,1/2, all eight outputs are 0. For the tw

balanced functions, on the other hand, the elements evolve viaX15F1(X0) @given by Eq.~6!# or F2(X0) @given by Eq.~7!#, and the inputs
can now giveX1>1/2 for half the cases. The first balanced functionB1 gives an output of 1 for the four inputs: 001, 010, 100, 111, and z
for the other four whileB2 gives output 1 for the four inputs: 100, 101, 110, 111, and 0 for the others.
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tional ring cavity, containing an active medium of two-lev
atoms homogeneously broadened and interacting with a
herent electromagnetic wave. The envelope of the elec
field En for successive round trips, indexed byn, obeys the
mapping@7#:

En115A1BEn exp~ i uEnu2!. ~9!

The parameterA is proportional to the coherent external fie
andB is an attenuation factor. This map has been observe
hybrid optical bistable devices with delayed feedback@8# and
also in an all-optical bistable device using a single-mo
optical fiber as a nonlinear medium in a ring cavity pump
by a train of mode locked pulses@9#.

Thus each devicej can encode the input through its initia
conditionsE0( j ). SinceE0( j ) is complex valued, it can en
code two inputs, one through its real part and anoth
through its imaginary part. The same scheme of encod
inputs namely, as a binary fraction, as given in Eq.~1!, can
be followed. All theN outputs are encoded in the coars
03621
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grained real and imaginary parts of the evolved stateEn( j )
5an( j )1 ibn( j ), j 51, . . . ,N/2.

When the parameters of the devices are aroundA;3 and
B;0.3, the evolution is chaotic, with the states of the diffe
ent unitsEn( j ), j 51,N/2, fluctuating wildly from element to
element at any particular snapshot of timen. Say thean( j )’s
andbn( j )’s lying above a prescribed cutoff encode an outp
of 1 and the rest encode 0. The coarse-grained evolved
En( j ), j 51,N/2, can then yield all possible balanced fun
tions through a suitable choice ofn and the cutoff.

When parameterA,1 the elements evolve to fixe
points. So all the units~after transience! will have identical
values. This is the analog of the constant function.

Consider the specific example ofk53, i.e., 2358 inputs.
Since for ak-bit problem one needs 2k21 devices~as each
device processes two inputs simultaneously!, we employ
four optical elements: En( j )5an( j )1 ibn( j ), with j
51, . . . ,4. Theinputs are encoded as initiala0( j ), and
b0( j ), j 51, . . . ,4.Thus, in binary fraction notation, inpu
4-4
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PARALLEL COMPUTING WITH EXTENDED DYNAMICAL . . . PHYSICAL REVIEW E 65 036214
000 givesa0(1)50.000, input 001 givesb0(1)50.001, in-
put 010 givesa0(2)50.010, input 100 givesb0(2)50.100,
etc.

One can obtain a constant function with system para
etersA,1, B;0.3. This will give an output~after short tran-
sience time! to be a(1)5a(2)5a(3)5a(4)5afixed and
b(1)5b(2)5b(3)5b(4)5bfixed. So any cutoff greater
than afixed and bfixed will give an output of 0 for allj at all
timesn.

To obtain balanced functions one can set the paramete
be A53, B50.3, which gives a chaotic mapping. For in
stance, a balanced function can be obtained by the ele
fields at t55, E5( j ), j 51, . . . ,4, which gives a(1)
53.694 76, a(2)52.091 72, a(3)53.339 39, a(4)
52.128 27, andb(1)50.399 02,b(2)520.057 57,b(3)5
20.582 17,b(4)50.281 57. The mean value ofa is 2.813 54
and the mean value ofb is 0.0102. Using the mean as th
cutoff, we have the eight outputs corresponding to the e
inputs to be 1, 1, 0, 0, 1, 0, 0, 1. Similarly with the state
t520, one can obtain a balanced function with outputs 1
0, 1, 1, 0, 0, 1, etc.

Now one can extract a small fraction of the output of ea
device and mix it to give a mean field,

hn5
1

N (
j 51

N

uEn~ j !u2, ~10!

whereEn( j ) is the electric field of thej th unit. The setup
could be designed to yield this mean-field output directly,
which case the above averaged quantity can be obta
through one measurement.

After transience, if we measure the mean field of the
vices@given by Eq.~9!# we find that for the constant functio
this mean field is constant in time with values bounded fr
above by 2, while for any balanced function, where the m
pings are necessarily chaotic, the mean field fluctuates
has values bounded from below by 8. So the mean field b
a clear and unambiguous signature of the nature of the fu
tions. If the mean field has a value of less than 2 this
clearly a constant function, andvice versa. So, if the task at
hand is only to determine whether the function is balanced
constant, one can do this with certainty through one dir
measurement of the mean field.

IV. THRESHOLD COUPLED ARRAY

Consider another example of a network of 2k5N chaotic
elementsx(1),x(2),...,x(N), where each chaotic elemen
has two basic dynamical phases@10,2#.

~1! Chaotic update. Synchronous global changes fro
time t to t11 of the elements in the network. This is go
erned by a chaotic evolution map, say, to be specific,
logistic map:F(x)5rx(12x) with r 54, which that maps
interval @0, 1# to itself.

~2! Adaptive phase. Between chaotic updates there is
adaptive phase that consists of local changes triggered
elements in the network having a statex greater than some
critical threshold valuex* , i.e.,x.x* . When this occurs, the
overcritical element, say thei th elementx( i ) relaxes~re-
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verts! to the threshold value spilling the ‘‘excess’’Z5$x( i )
2x* ( i )% over to its nearest neighbor down the array,

x~ i !→x* ~ i !,

x~ i 11!→x~ i 11!1Z.

This excess can snowball into an ‘‘avalanche’’ of exce
down the array, in a kind of domino effect, with the cum
lative excess being emitted from the ‘‘open end’’ of the n
work, i.e., sent outside the system. When an element
statex( i )<x* ( i ) its state remains atx( i ), and no interele-
ment transfer takes place.

The adaptive phase can be sequential, partially paralle
entirely parallel~see Fig. 3!. In the case of sequential con
nections, the entire adaptive process takesO(N) adaptive
steps. When the elements are connected in parallel, all i
vidual leads are wired together to give a collective open-e
readout. Thus, the relaxation of all the elements is simu
neous, and the adaptive step is ofO(1). The clock of the
dynamical system is set by the chaotic update though, s
that time scale is independent of the topology of the conn
tions and threshold settings. The adaptive time~which varies
for different threshold settings, and topologies of the me!
is required to be faster and the adaptive process occur
completion between the chaotic updates.

We illustrate this threshold coupled array with a simp
example. Let us consider two coupled elements, i.e.,N52,
with thresholds set atx* (1)50.5 andx* (2)50.25. The in-
put state at timet50 is given asx(1)50.25,x(2)50.5. At
t51 chaotic update takes place on those input values an
adaptive phase follows. Att52 again the next chaotic up
date occurs, followed by the adaptive phase, and so on. T
III shows step-by-step changes of the system over three u
of time. Output fromx(2) represents the cumulative exce

FIG. 3. A mesh of four threshold coupled elements (N54): ~a!
sequentially connected—here the adaptive phase takesN54 adap-
tive steps;~b! parallel connected—here the adaptive phase ta
one adaptive step, as all elements relax simultaneously emi
excess to the open end; and~c! connected in a binary tree—here th
adaptive phase takes ln2 N52 steps.
4-5
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TABLE III. Step-by-step changes of anN52 system with two coupled elementsx(1) andx(2), over
three units of time. The thresholds here are set atx* (1)50.5 andx* (2)50.25. Output fromx(2) represents
the cumulative excess emitted from the open end and is equal to 1.0 for all times for these threshold
The states of the individual elementsx( i ) are equal tox* ( i ) for all times after the first transient step att
51.

x(1) Output fromx(1) x(2) Output fromx(2)

t50; input 0.25 0.5
t51; chaotic update 0.75 1.0

Adaptive phase 0.5 0.25 1.25→0.25 1.0
t52; chaotic update 1.0 0.75

Adaptive phase 0.5 0.5 1.25→0.25 1.0
t53; chaotic update 1.0 0.75

Adaptive phase 0.5 0.5 1.25→0.25 1.0
r
s o
l

ld

the

of
old
emitted from the open end. After the transient step oft51,
the dynamics reaches the steady state, i.e., fot
52,3, . . . ,̀ , the emitted excess is identical and the state
the individual elements before a chaotic update are al
x( i )5x* ( i ). In fact, this steady-state configuration ofx( i )
5x* ( i ) before a chaotic update is obtained for all thresho
x* < 3

4 after short transience@10#.
03621
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Such an array can yieldN outputs simultaneously, with
each output being encoded by the state of an element in
array, i.e., thei th output is coded in the state of uniti: x( i ).
Thus this array can process ak-bit domain space~which has
2k possible inputs! concurrently.

The entire output sequence is obtained from the state
this network after transience. We operate in the thresh
with
ents

7, 8 give
lds

tates

four units
s to a
FIG. 4. The DJ problem for the case ofk53, i.e., 2358 inputs, implemented by a network of eight threshold coupled logistic maps,
the state of thei th element encoding the output to thei th input. To implement different balanced functions, the thresholds of the elem
in the array are set atx* ( i ), i 51, . . . ,8, withx* ( i ) beingx0* 5

3
4 for half the elements~randomly chosen! andx1* 5

3
8 for the remaining half.

Here we depict the implementation of a particular balanced function with output sequence 0, 1, 0, 0, 0, 1, 1, 1. Since inputs 2, 6,
output 1, the elements 2, 6, 7, 8 in the array have threshold set atx1* 5

3
8 and the remaining four elements giving output 0 have thresho

at x0* 5
3
4 . The steady-state configuration just before a chaotic update has all elements at threshold valuex( i )5x* ( i ). After chaotic update,

the value ofx of elements 2, 6, 7, 8 isf (3/8)515/16.x1* and so they fire, initiating an avalanche. The elements 1, 3, 4, 5 have s

f ( 3
4 )5

3
4 <x0* and so they do not trigger any response. The excess emission from the array at the end of the avalanching process is

of excess (1 unit5 15
162

3
8 5

9
16). So simply by noting that this array emits excess, we can know with certainty that it is analogou

balanced function, since the array for the constant function~with all thresholds at 1! emits no excess at all at any time.
4-6
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regionx* <3/4. For such systems, after transience~which is
usually very short! the array is in a steady-state configur
tion, i.e., the configuration at the end of a chaotic update p
adaptive relaxation~i.e., just before the subsequent chao
update! is always the same:x( i )5x* ( i ) for i 51, . . . ,N,
wherex* ( i ) is the threshold for thei th element. In such a
configuration, after a chaotic update the elements that
overcritical in the network, i.e., withf (x* ).x* , encode an
output of 1. So the elements that trigger a response
‘‘fire,’’ in some sense give output 1. The units that are u
dercritical after the chaotic update@i.e., with f (x* )<x* # en-
code an output of 0~Fig. 4!.

To obtain a constant function we simply have to s
thresholdx* 51 for all the elements. Since the dynamic
values are bounded by 1, no element of this system will t
ever be over the threshold at any time. So they will ne
‘‘fire,’’ and consequently always encode 0. The emitted e
cess is consequently also identically zero. So no emitted
cess from the system is a signature of a constant functio

To obtain a balanced function, we have to set half of
elements~randomly chosen! to have thresholdsx0* and the
other half to have thresholdsx1* . There areCN/2

N ways of
doing this, implementing the different balanced functio
The elements with thresholdsx0* encode an output of 0, an
those with thresholdsx1* encode 1 (x0* ,x1* <3/4). As men-
tioned before, after short transience this array is in a ste
configuration;x( i )5x* ( i ) for i 51, . . . ,N, with x* ( i ) be-
ing eitherx0* or x1* .

Now, to obtain output 0, i.e., to not trigger an adapti
response after chaotic update, we must demand thatf (x* )
<x* . So one can set the threshold to bex0* 53/4, or x0*
50. Sincef (x0* )5x0* for the cases of bothx0* 53/4 andx0*
50 after chaotic update, the elements with thresholds atx0*
will not be above threshold and consequently cannot star
avalanche@11#.
ce
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The rest of theN/2 elements, encoding output 1, can ha
a threshold set at somex1* , which will generate large exces
emission after a chaotic update. For instance, we can ch
x1* 53/8, which maximizes the quantityD5 f (x1* )2x1*
54x1* (12x1* )2x1* , and generates an excess emission
D59/16 from each element. All possible balanced functio
can be obtained by suitably choosing the thresholds of thN
elements, and all such arrays will yield an excess emissio
(N/2)D from the open edge.

If we do not need the individual outputsf ( i ), but simply
have the task of finding out if any one of them is nonzero,
can just examine the excess emission from the open en
the array. This collective excess is exactly equal to the nu
ber of input elements in the array yielding an output of 1~in
units ofD!. So for all theCN/2

N distinct balanced functions we
will have an excess emission with common value (N/2)D
and this will immediately tell us that there areN/2 outputs
that are 1.

Thus, with one measurement of the collective excess
can deduce with certainty whether or not the network yie
any one of the innumerable balanced functions, as all b
anced functions will yield an excess of exactly (N/2)D while
the constant function yields no excess emission@12#.

Even under noise the difference in the collective exces
balanced functions and constant functions is;(N/2)D.
Since D is chosen to be large, these responses are cle
different. Thus, deduction of the class of functions und
noise is as easily done as in the noise-free case. S
schemes may be extended to closely related extended
tems such as models of sandpile and percolation phenom

In summary, we have used extended dynamical system
obtain different strategies for parallelizing the DJ proble
In particular, we have exploited the collective properties
such systems to reduce computational effort. The succes
these schemes underscores the potential for problem so
using the parallelism inherent in extended dynami
systems.
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