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Targeting spatiotemporal patterns in extended systems with multiple coexisting attractors
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We set up adaptive control algorithms which can be used to achieve control to desired attractors in spatially
extended systems. Traditional adaptive control methods often fail in such systems due to the presence of
multiple coexisting attractors that lead to a high probability of the system getting trapped in an undesired
attractor despite the application of control. We use quenching techniques to achieve control in such difficult
scenarios. When the control parameter evolves through parameter regions that lead to undesired attractors, the
control parameter is changed sufficiently fast so that the system does not get time to get trapped in these
attractors, but gets quenched instead to the desirable attractor. The rate of change of the parameter is guided by
using variable stiffness of control. We demonstrate the efficacy of our technique in a system of coupled
sine-circle maps. Further, such variable stiffness schemes can also be used to step up the efficiency of adaptive
control algorithms by making frequent suitable changes in the stiffness of control during the control dynamics.
This strategy is very successful in reducing the time required to achieve control, while maintaining the stability
of the control dynamics.
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Considerable recent research effort has focused
mechanisms of control in strongly nonlinear systems wh
typically display a diversity of dynamical behavior in param
eter space. Such methods aim to reach and maintain a
dynamical activity~the ‘‘target’’! in systems intrinsically ca-
pable of very complicated behavior@1–8#. In addition to at-
tempts directed towards controlling low-dimensional nonl
ear systems@1–4#, substantial efforts have gone into th
control of spatiotemporal behavior in extended syste
@5–8#. These range from the stabilization of periodic patte
in optical turbulence@5# and the selection of spatiotempor
current densities in semiconductors@6# to the control of
buckling beam systems using smart matter@7# and the tar-
geting of spatiotemporal patterns in coupled map lattices@8#.

The control problem is particularly difficult in extende
systems that possess a multiplicity of coexisting attract
The reason for this is that to obtain the target, which is o
of these coexisting attractors, the control dynamics not o
need to evolve to the desired parameter values, via meth
such as adaptive control@1#, but it must evolve in such a wa
that the state of the system either remains in the basin
attraction of the targeted state, or evolves to the appropr
basin of attraction. We indicate below a potent method
achieving control in such difficult control situations. In th
method the rate of change of parameter in different regi
of parameter space is guided by varying the ‘‘stiffness’’
control, such that the control parameter is evolved very
through parameter regions, which might settle down to
desired attractors so that the system is rapidly ‘‘quenche
to the desired attractor.

First, let us recall the adaptive control algorithm, pr
posed in Ref.@1# and developed and extended in Refs.@2–5#
and@8#. The procedure utilizes an error signal proportiona
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the difference between the goal output and the actual ou
of the system. The error signal drives the evolution of t
parameters which readjust so as to reduce the error to z
Specifically, in a generalN-dimensional nonlinear dynamica
system described by the evolution equationẊ5F(X;m;t),
whereX[(X1 ,X2 , . . . ,XN) are the state variables andm is
the parameter whose value determines the nature of the
namics, the adaptive control applies a feedback loop in or
to drive the system parameter~or parameters! to the value~s!
required, so as to achieve a desired target state via the e
tion

ṁ5g~P !2P!, ~1!

whereP ! is the target value of some variable or propertyP
~which could be a function of several variables! and the
value of g indicates thestiffness of control. Here theerror
signalP !2P drives the system to the target state. The co
trol stiffnessg regulates the strength of feedbackand thus,
determines how rapidly the system is controlled.When the
system achieves the target the control equation ‘‘switc
off’’ ~as the error signal becomes zero!.

VARIABLE STIFFNESS ALGORITHMS
TO ACHIEVE QUENCHING

In situations where a system has to traverse large par
eter regions where it can get trapped in undesirable attra
basins enroute to the target, traditional adaptive con
methods as stated above will fail, but variable stiffness c
still make control achievable. The basic idea is to guide
system very quickly through treacherous terrain~by increas-
ing the stiffness of control! so that it is ‘‘quenched’’ to the
basin of attraction of the target state. Once inside the con
basin, i.e., the set of initial points from which fixed stiffne
control is achievable, the stiffness is lowered so that the s
©2001 The American Physical Society03-1
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tem does not oscillate wildly about the target and leave
control basin again.

We demonstrate this control principle in a lattice
coupled sine-circle maps targeting different spatiotempo
behaviors@8#. This system is capable of exhibiting a ric
variety of spatiotemporal patterns@9#, including coexisting
basins of attraction@10#, and thus provides a good testin
ground for the technique. Note that the method is quite g
eral and can be directly applied to other extended system
well.

The time evolution of a coupled sine-circle map latti
~SCML! is given by

xn11~ i !5~12e! f @V,K,xn~ i !#1
e

2
$ f @Kxn~ i 21!#

1 f @V,K,xn~ i 11!#% Mod 1, ~2!

wheren is the discrete time index andi is the site index (i
51, . . . ,N, whereN is the lattice size!. The local map is

f ~x,V,K !5x1V2
K

2p
sin~2px!, ~3!

where 0<x<1. K indicates the strength of the nonlineari
and e gives the strength of coupling among neighbors. T
system supports various dynamical phases, such as the
chronized fixed point, i.e., spatial period 1 temporal perio
~S1T1!, spatial period 2 temporal period 1~S2T1!, and spa-
tial period 2 temporal period 2~S2T2!. Figure 1 schemati-
cally shows a slice ofe parameter space~with V50,K51),
demarcating the regions of stability of the S2T2, S2T1, a
S1T1 solutions obtained from period 2 initial conditions~see
Ref. @9# for a detailed phase diagram!. Importantly, note that
these S2T1 and S2T2 regions coexist with the S1T1 solut
which in fact has a very large basin of attraction. This ma
conventional adaptive control methods unfeasible for targ
ing the S2T1 and S2T2 states in this system, as the con
basin for these states is very small. Since the control d
culties encountered here are representative of the gen
problems arising due to coexisting attractors in extended
tems that display hysteresis, we will use this situation a
test-bed for the quenched adaptive feedback method@11#.

To target spatiotemporal patterns we must use spatia
temporal feedbackP !2P, specifically tailored for the dis-
tinctive characteristics of the desired targeted pattern. In
dition, the feedback should be simply defined, without
explicit knowledge of the system’s equations of motion,

FIG. 1. Schematic diagram~to scale! showing the phases fo
SCML, with respect to coupling parametere ~for V50, K51),
obtained from spatial period two initial conditions
. . . x1x2x1x2 . . . , with x11x251.0.
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order to have greater utility in experimental application
Further, it must not be measurement intensive, i.e., it m
not entail monitoring a large number of sites. In fact, here
will only use information from asingle~arbitrary! site for the
necessary feedback.

As a representative example, we demonstrate the con
procedure on the coupling parametere, which implies the
following:

en115en2g3sgn~emid2en!3~Dx2Dx* !, ~4!

with Dx* being the target value of the local expansionli
quantityDx. The factor sgn(emid2en) takes care of the sign
of the control feedback, withemid being a very rough esti-
mate of the mid-point of the parameter region su
porting the targeted state. In order to target S2T1.Dx
5uxn11( i c11)2xn( i c)u and for control to a S2T2 state
Dx5uxn11( i c)2xn( i c)u, wherei c is a single ~arbitrary! lat-
tice site monitored for feedback. These error signals dis
guish clearly between the targets and are not satisfied by
of the spatiotemporal behavior, other than the targeted o

Now this is a difficult control situation, as the multiplicit
of coexisting attractors here implies that reaching the ri
parameter is not enough to ensure control. For instance
the parameter region supporting the S2T1 and S2T2 sta
the fixed point is also a stable state with a very large basin
attraction. In fact, any generic random initial condition w
go to a synchronized fixed point. Only period 2 initial lattic
will be attracted to the S2T1 or S2T2 states. Thus, conv
tional control fails in such cases. For example, if the S2
phase is targeted from the S2T1 region of parameter spac
vice versa~with the initial state in the basin of attraction o
the spatial period two state!, control cannot be achieved du
to the large intervening fixed point regime~see Fig. 1! in
which the state is unable to escape synchronization.
usual method of using noise to jolt the system out of und
ired trapping basins enroute to the target does not work h
as these basins are quite extensive in parameter space
very stable. Thus the only way to achieve the desired ta
is to quenchthe system so that the system does not have t
to respond to the changed parameter by settling down to
undesired synchronized fixed point. This quenching
achieved using large stiffness of control.

In our method we start the control procedure with ve
large initial stiffness and then use the following algorithm
maintain an acceptable level of stiffness:~i! Estimate the
controlled parametere with initial stiffnessg0 (g0 large!; ~ii !
Test: if the estimatede is not in the rangee low,e,ehigh ,
reduce stiffness@g in Eq. ~4!# by a predetermined factor~for
instance, reduce to half!; ~iii ! Repeat untile low,e,ehigh .
The only inputs in this algorithm are the limiting bounds f
the controlled parameter,ehigh ande low . These can be easily
set to be the limiting values of the parameter, e.g., in t
casee low is naturally 0 andehigh is 1.

Now this variable stiffness algorithm can effectively ta
the system from the S2T2 state to the control basin of
targeted S2T1 state by adjusting the controlled paramete
so fast that the system does not have a chance to synchro
3-2
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and get trapped in the fixed point region~see Fig. 2!. The
control is achieved in only;20 steps.

In a similar fashion, the method successfully takes a s
tem from the S2T1 state to the S2T2 state, by rapidly dr
ging the system into the control basin of the targeted reg
Complete control is again achieved in;20 steps~see Fig. 3!.
Note that the control time is quite the same for lattices
different sizes.

We must however note that while run-time control do
not necessitate computations based on dynamical equat
it is necessary at the outset to chart out the rough bifurca
diagram of the system. Indeed, one cannot gauge theneed
for quenching without some knowledge of the layout of t
dynamical phases and their basins of attraction in param
space. However, this knowledge need not be detailed an

FIG. 2. ~a! Plots of the evolution ofxn( i c) and xn( i c11)
~dashed lines!, where i c is the monitored site, as well asg ~bold
line!, for control to the S2T1 state of a SCML via the quenchi
algorithm. Here, initial e050.9 ~i.e. in the S2T2 regime!, g0

50.4, emid;0, andDx* 50.75.~b! Plots of the evolution ofe and
g, for control to the S2T2 state of a SCML via the quenchi
algorithm. Here, initial e050.1 ~i.e. in the S2T1 regime!, g0

50.5, emid;1, andDx* 50.75. The initial lattice (N5100) has
spatial period two in both cases.

FIG. 3. Plots of the evolution ofe from initial e050.9, for
control to the S1T1 state of a SCML (N5100) via variable stiffness
schemes I~long dash! and II ~short dash!, and via the fixed stiffness
algorithm ~solid line!. Initial g0 is 0.001 in scheme I and 5 in
scheme II.
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not used during runtime. Moreover, in the case of real
periments, this knowledge is readily obtainable, even in
absence of a model.

VARIABLE STIFFNESS ALGORITHMS
FOR ENHANCED EFFICIENCY

Now we will try to use the variable stiffness of control t
achieve much moreefficientcontrol. The control~or recov-
ery! time t, defined as the time required to reach the desi
state within finite precision, is crucially dependent on t
value of stiffnessg. While for small g the control time is
inversely proportional tog @3#, beyond an optimal stiffness
in most systems, increasingg actually retards recoveryor
renders the control dynamics unstableas the system swing
wildly about the target without ever being ‘‘damped’’ ont
the target@2,3#. So there is atrade-off between stability and
speed of control. This crucial dependence of control times o
the stiffness of control is the key behind our scheme to
hance the efficacy of the adaptive control algorithm by tu
ing stiffnessg to some optimal value at each point in th
control path.

The principal idea is as follows: we would like tooptimize
progress towards the goal by making frequent suita
changes in the stiffness of control. The purpose is to achiev
a predetermined accuracy in minimum time. This enta
monitoring at each step how far we can safely increase
value of g for the next step. Two distinct strategies can
employed to achieve this:~i! Start with very low control
stiffness ~which is guaranteed to yield stable control! and
increase it to the maximum acceptable level;~ii ! Start with
very high control stiffness and then come down to an acce
able level. The implementation of both strategies involve
test which returns information on the error incurred in taki
higher g. It is achieved here via two schemes, which w
again demonstrate on the SCML, targeting a spatiotemp
fixed point ~S1T1!.

Specifically, for instance, to reach and maintain the S1
one can employ the following control strategy: here the t
get is xn11( i )2xn( i )50 and xn( i 11)2xn( i )50 for all
sites i at all timesn. We can choose the spatial propertyP
5xn( i 11)2xn( i ), for control to the synchronized state as
distinguishes between S1T1 and the neighboring S2T1 s
@which, while having the propertyxn11( i )2xn( i )50, has
xn( i 11)2xn( i )Þ0]. The controlled parametere then
evolves utilizing an error signalDx, given by Dx5xn( i c
11)2xn( i c), wherei c is the single site being monitored fo
feedback for adaptive control.

Significantly, this method can be implemented witho
explicit computation of the dynamics during run-time co
trol, and just one site~and its local neighborhood! is moni-
tored to obtain the required feedback, and this is capabl
regulating the entire lattice. On this adaptive algorithm
can implement schemes I and II for varying stiffnessg in
order to reduce control time without compromising stabili

Scheme I.In this method, at every point in the contro
dynamics we set control stiffness at some very low value
then increase it to the maximum acceptable level at t
3-3
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point. An estimate of the error incurred by taking high
stiffness is obtained by using a ‘‘local lyapunov’’-like expo
nent. If this is within a preassigned acceptable limit of ac
racy we increase the stiffness of control for the next adap
control step. The idea then is that one cannot estimate
acceptable level of stiffnessa priori, and thus starts from a
very low level which guarantees stable control and lets
algorithm find an acceptably high stiffness as the sys
evolves.

To implement this general strategy utilizingno knowledge
of the evolution equations, i.e., using only the time serie
data of a particular variable, we do the following:~i! Initially
choose a small stiffnessg5g0 with g0→0. Smallg guar-
anteesstable successful control even if very slow@3#; ~ii ! If
ug3@xn( i c)2xn21( i c)#u,d whered is a predetermined ac
curacy, we doubleg ~note thatuxn( i c)2xn21( i c)u is ‘‘local
lyapunov’’-like factor and indicates the ‘‘local chaos’’ o
‘‘local expansion properties’’ at the current phase point
the control path@11#!; ~iii ! Repeat step 2 till the accurac
requirement is violated.

Extensive numerics indicate that control times are i
proved dramatically by the method. For instance, start
with g050.001, control time with a fixed stiffness algorith
is ;225, while this variable stiffness algorithm yields co
trol in times of the order of ten steps~see Fig. 3!.

Scheme II.This scheme is very simply stated as follow
an estimate of the controlled parameter@via Eq. ~1!# is made
and if this estimate exceeds a preassigned upper or lo
bound, the stiffness is reduced, or else it’s kept at the orig
high value. Thus, we start with very high control stiffne
and then come down to a level in keeping with the dema
of stability and the operational range of parameter–ph
space. Specifically then, we vary stiffness by the followi
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algorithm: ~i! Set control stiffnessg to some high valueg0;
~ii ! Estimate the value of the subsequent adjustment in
controlled parametere, obtained via,e85en2g @Dxn( i c)
2Dx* #; ~iii ! If e8 is larger thanehigh or less thane low , then
g→g/2; ~iv! Go to step 2 and repeat step 3 if necessary.

Extensive numerics clearly show the success of the ab
strategy. Though the stiffness adjustments are infrequent
covery times are improved dramatically. For instance, c
trol of S1T1 from a random initial lattice withe50.9, now
takes only;11 iterations~see Fig. 3!. Note that the control
time is quite the same for lattices of different sizes.

Thus, both of these variable stiffness control algorith
have the desired effect of tuning the value ofg so that the
controlled dynamics yields a spatiotemporal fixed point
times much shorter than that required for fixed stiffness
gorithms.

In summary, we have suggested how variable stiffn
adaptive control algorithms can be used to achieve contro
situations where control fails with fixed control stiffnes
such as in the presence of coexisting attractors, a phenom
widespread in extended systems. In such difficult con
scenarios we use variable stiffness to guide the rate
change of the parameter and achieve control by changing
parameter sufficiently fast so that the system does not h
time to get trapped in any undesired attractor. Further,
show how such variable stiffness schemes can be use
step up the efficiency of control by making frequent suita
changes in the stiffness of control, resulting in huge gains
efficiency vis-a-vis fixed control stiffness algorithms. O
methods are simple and can be implemented without deta
knowledge of the system. We therefore hope they will be
utility in practical contexts.
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