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Controlling neuronal spikes
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We propose two control strategies for achieving desired firing patterns in a physiologically realistic model
neuron. The techniques are powerful, efficient, and robust, and we have applied them successfully to obtain a
range of targeted spiking behaviors. The methods complement each other: one involves the manipulation of
only a parameter, the applied soma current, and the other involves the manipulation of only a state variable, the
membrane potential. Both techniques have the advantage that they are not measurement-intensive nor do they
involve much run-time computation, as knowledge of only the interspike interval is necessary to implement
control.
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I. INTRODUCTION

A wide range of phenomena occurs in nature and in
laboratory, ranging from highly coherent ones such as s
chronized oscillator arrays to highly disordered systems s
as seen in fluid turbulence. Control mechanisms that enab
system to maintain a fixed activity~the ‘‘goal’’ or ‘‘target’’ !
even when intrinsically chaotic have many applications
situations ranging from biology~as in the control of cardiac
rhythms! to engineering@1#. In neuronal systems, in particu
lar, a wealth of complex patterns has been experiment
observed in a variety of cases@2#. However, the mechanism
by which such complex spiking patterns can be manipula
are not well understood. It is thus of considerable inter
and potential utility todevice control algorithms capable o
achieving the desired type of behaviorin such complex sys-
tems. In this paper, we offer two complementary cont
strategies targeting desired firing patterns in a prototyp
model of a Hippocampal neuron: the Pinsky-Rinzel mo
@3#. First we describe the model neuron below.

II. THE PINSKY-RINZEL MODEL NEURON

Based on extensive physiological data, Traub develope
120-variable 19-compartment model of a pyramidal c
from the CA3 region of the hippocampus of the brain@4#.
Subsequently, Pinsky and Rinzel reduced this to an ei
variable two-compartment model while still preserving
physiological relevance@3#. This is the model that we will
use to explore ways of manipulating the responses of
neuron.

The Pinsky-Rinzel model neuron consists of somatic a
dendritic compartments resistively coupled at different p
tentials. A patch of the cell membrane is modeled as
equivalent electrical circuit consisting of a resistor and a
pacitor in parallel. The current balance equations for the
compartments follow from differentiating the capacitan
definition. The details of the model, the values of the para
eters, and initial conditions are given below@5#.

The eight variables in the model are the five gating va
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ables h, n, s, c, and q; the Ca level@Ca#; and the soma
voltageVs and dendrite voltageVd . The parameters include
the coupling conductance between soma and dendritegc ,
reversal potentialsVNa, VCa, VK , Vl , Vsyn, ionic conduc-
tancesgl , gNa, gKDR , gCa, gKAHP , gKCa, synaptic conduc-
tancesgMMDA , gAMPA , relative area of soma to dendritep,
membrane capacitancecm , and the applied soma currenti s .

The gate equations are of the form

dh

dt
5~12h!ah2hbh , ~1!

dn

dt
5~12n!an2nbn , ~2!

ds

dt
5~12s!as2sbs , ~3!

dc

dt
5~12c!ac2cbc , ~4!

dq

dt
5~12q!aq2qbq , ~5!

wherea andb are phenomenologically determined from e
perimental data so as to mimic the opening and closing
membrane gates@3#:

ah50.128 expS 17.02Vs

18.0 D , ~6!

bh54.0Y H 1.01expS 40.02Vs

5.0 D J , ~7!

an50.016~35.12Vs!Y FexpS 35.12Vs

5.0 D21.0G , ~8!
©2001 The American Physical Society09-1
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bn50.25 exp~0.520.025Vs!, ~9!

as5
1.6

1.01exp@20.072~Vd265.0!#
, ~10!

bs50.02~Vd251.1!Y H exp~Vd251.1!

5.0
21.0J , ~11!

ac5H expS Vd210.0

11.0
2

Vd26.5

27.0 D J Y 18.975 if Vd<50.0,

~12!

bc52.0 expS 6.52Vd

27.0 D2ac if Vd<50.0, ~13!

ac52.0 expS 6.52Vd

27.0 D if Vd.50.0, ~14!

bc50.0 if Vd.50.0, ~15!

aq5min~0.000 02@Ca#,0.01!, ~16!

bq50.001, ~17!

as5
0.32~13.12Vs!

expH ~13.12Vs!

4.0
21.0J , ~18!

bs5
0.28~Vs240.1!

expH ~Vs240.1!

5.0
21.0J , ~19!

tm5
1

am1bm
, ~20!

m`5amtm . ~21!

The Ca level is given by

d@Ca#

dt
520.075@Ca#20.13s2gCa~Vd2VCa!, ~22!

The rate of change of the soma and dendrite voltag
given by differentiating the capacitance definitionCV5Q
5SI , where a typical current is obtained fromIR5r (V
2Vref), wherer is the voltage-dependent gating variable:

dVs

dt
5

i s

cm
, ~23!

dVd

dt
5

i d

cm
, ~24!

where i s is a sum of the electronic coupling2gc(Vs
2Vd)/p, leak current 2gl(Vs2Vl), inward Na current
2gNam`

2 h(Vs2VNa), delayed-rectifier K curren
2gKDRn(Vs2VK), and soma electrode currenti s /p:
05620
is

i s52gc

~Vs2Vd!

p
2gl~Vs2Vl !2gNam`

2 h~Vs2VNa!

2gKDRn~Vs2VK!1
i s

p
. ~25!

The i d is a sum of electrotonic coupling2gc(Vd
2Vs)/(12p), leak current2gl(Vd2Vl), inward Ca current
2gCas

2(Vd2VCa), K after-hyperpolarization curren
2gKAHPq(Vd2VK), Ca-activated K current
2gKCamin(@Ca#/250.0,1.0)(Vd2VK), synaptic current
2 i syn/(12p), and dendrite electrode currenti de/(12p):

r `51.0/$1.010.28 exp@20.062~Vd260.0!#%, ~26!

i syn5gNMDAsNMDAr `~Vd2Vsyn!, ~27!

i d52gc

~Vd2Vs!

~12p!
2gl~Vd2Vl !2gCas

2~Vd2VCa!

2gKAHPq~Vd2VK!2gKCaminS @Ca#

25.0
,1.0D ~Vd2VK!

2
i syn

~12p!
1

i de

~12p!
. ~28!

Thus the Pinsky-Rinzel neuron is a strongly nonline
highly coupled, high-dimensional system. Now we will dem
onstrate two complementary control algorithms, target
different spiking behaviors, in this neuron. It appears that
parameter most accessible to external manipulation is
applied soma currenti s , and the variables one can monito
and adjust with greatest ease are the voltagesVs andVd . So
we will demonstrate the efficacy of our methods usingonly
these as input in the control algorithms.

The two methods we will introduce complement ea
other. One is based on the manipulation of a parameteri s)
and the other involves the manipulation of a state variab~
Vs or Vd). Both do not require knowledge of the system
governing equations and are based on the instantan
value of a single variable of the system~either voltageVs or
Vd).

III. ADAPTIVE FEEDBACK CONTROL

In adaptive control, one applies a feedback loop in or
to drive the system parameter~or parameters! to the value~s!
required so as to achieve a desired target state@6#. Consider
a generalN-dimensional nonlinear dynamical system d
scribed by the evolution equation

Ẋ5F~X;m;t !, ~29!

where X[(X1 ,X2 ,...,XN) are the state variables andm is
the parameter whose value determines the nature of the
namics. The adaptive control is effected by the additio
dynamics
9-2
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ṁ5g~P!2P!, ~30!

whereP! is the target value of some variable or propertyP
~which could be a function of several variables!. The value
of the proportionality constantg indicates the ‘‘stiffness of
control,’’ which determines the strength of the feedba
~much like the stiffness of a spring, if one considers t
feedback equation to be analogous to the restoring motio
a spring!. So theerror signal (P!2P) drives the system to
the target state. The scheme is adaptive since in the a
procedure the parameters that determine the nature o
dynamicsself-adjustor adapt themselves to yield the desir
dynamics, driven by the ‘‘dynamic feedback.’’ Note that t
relationship between the parameterm and the monitored
propertyP should be monotonic~though it need not be lin-
ear, and in fact most often is not! @7#.

For the success of the method, the parameterm in Eq. ~30!
should be a parameter capable of effecting large dynam
changes such that the feedback can drive its value to a
gime that naturally supports the desired dynamics. The p
erty P should characterize the desired state well, and in
dition be simply defined without explicit knowledge of th
system’s equations of motion. Furthermore, one would l
to achieve control without having to monitor a large numb
of variables. The technique set up by us incorporates all
above features.

Now we will apply this control principle on a Pinsky
Rinzel neuron, targeting different spiking behaviors, i.
states with different specific interspike intervalsI. In this
demonstration, we will manipulate the applied soma curr
i s , which appears to be the parameter most easily amen
to quick manipulation, i.e., we will attempt to control th
neuronal spiking behavior withi s as our choice form in the
control Eq.~30!. The procedure for reaching and maintaini
a particularI, by adjusting the applied currenti s via adaptive
feedback, is then as follows: if the desired value ofI is I* at
all times, then the control equation@with P[I, P* [I* , and
the controlled parmeterm[ i s in Eq. ~30!# is

i s~n11!5 i s~n!2g~In2I* !, ~31!

whereg is the stiffness of control andIn is the current in-
terspike interval, i.e., the time difference between the curr
spike and its immediately preceding one@8#. This control
algorithm has the desired effect of tuning the value ofi s such
that the dynamics of the combined equations yields a ste
state withI5I* .

Note that the control isstroboscopic. It is implemented
only at the onset of a spike. Whenever a spike occurs, thI
is measured and the feedback mechanism adjusts the cu
according to Eq.~31!.

It should be emphasized that the control algorithm int
duced above does not requirea priori knowledge of the gov-
erning equations of the system. The only information nec
sary to implement adaptive control is the currentI value
~i.e., the difference in the time at which the current sp
occurs and that at which the previous one had occurred!.

Figure 1 shows an example of controlling to a state w
low fixed I, namely a state where spiking is frequent a
05620
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regular. The initial state of the neuron has a current va
very far from that which yields the target. Clearly und
control dynamics, the neuronal system rapidly reaches
desired state, as is evident from comparing the dynam
with and without control@Figs. 1~a! and 1~b!#. Figure 2
shows the rapid evolution of the parameter to a value t
supports the target state, as well as the rapid evolution
propertyP[I to its targeted value.

Once the system achieves the target, it remains there
the control equation is ‘‘switched off’’@as the error signal is
naturally zero in Eq.~31!#. If the parameters begin to drif
~for instance, due to environmental fluctuations!, the control
automatically becomes effective again~as the error signa
becomes nonzero again! and it readily brings the system
back to the desired state.

The stiffnessg determines how rapidly the system is co
trolled. The control time, defined as the time required
reach the desired state, is crucially dependent on the valu
g. Numerical experiments show that for smallg, the recov-
ery time is inversely proportional to the stiffness of contr
~see Fig. 3!.

If we wish to target a more irregular firing state, we ha
to set a targetI of larger than 30 ms, as the system can on
support irregular firing beyond thatI, and so the adaptive
mechanism leads to fluctuating currenti s , which in turn
leads to irregular firing around a meanI* . Thus we can
achieve the desired effect of obtaining a state with very
regular spikes~see Fig. 4 for a representative example of th
‘‘anticontrol’’ !.

FIG. 1. The time evolution of the membrane potentialVs ~in
mV! of the Pinsky-Rinzel neuron, for the cases of~a! uncontrolled
neuron showing infrequent irregular spiking behavior (i s51 nA);
~b! the neuron under feedback control, with targetI* 515 ms and
stiffness of controlg50.05 in Eq.~31!. Note that the control rap-
idly leads to spiking at regular intervals of 15 ms, as desired.
9-3
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SUDESHNA SINHA AND WILLIAM L. DITTO PHYSICAL REVIEW E 63 056209
FIG. 2. The time evolution of~a! the soma currenti s ~in nano-
amperes! and ~b! the interspike intervalI ~in ms! for the Pinsky-
Rinzel neuron under adaptive feedback control withI* 515 ms and
g50.075 in Eq.~31!. The dashed line in~b! shows the target ISI of
15 ms. The initial soma current isi s51.0 nA, which when uncon-
trolled yields large and very irregularI. Note that the control
switches off@as the error tem in Eq.~31! goes to zero# when the
system reaches the target state~at t;400 ms).

FIG. 3. The time evolution of the interspike intervalI ~in ms!
for the Pinsky-Rinzel neuron under adaptive feedback control w
I* 520 ms, and stiffness of controlg equal to ~a! 0.05 and~b!
0.005 in Eq.~31!. The dashed line shows the targetI of 20 ms.
Note that withg50.05, the target state is achieved in about half
time as compared withg50.005.
05620
In real experiments, it is conceivable that the ISI may n
be measured very accurately. Thus the technique outli
above should be reliable with respect to noise in ISI de
mination, in order to be useful. We have checked that
method indeed is successful even if the ISI fed into the fe
back loop has a noisy spread amounting to up to 5% of
targetedI.

Finally, note that this control method has one limitation:
the system does not have any parameter regime yielding
targeted dynamical behavior, the adaptive control will fail
achieve that particular target. So the method is capable
achieving only those targets that have a stable basin o
traction somewhere in parameter space. This is usually
much of a limitation, though, as nonlinear systems gen
cally support many different dynamical behaviors in diffe
ent parameter regimes, as is evident from the rich bifurca
structure in parameter space of most nonlinear systems. S
this sense, adaptive control works like an efficient sea
algorithm for varied dynamical characteristics in parame
space, as is the case in this neuronal model for both reg
and irregular firing targets@8#.

IV. THRESHOLD CONTROL OF A STATE VARIABLE

Now we describe how threshold mechanisms can be
fectively employed to control neuronal systems onto sta
fixed spiking patterns by manipulating not a parameter bu
state variable of the system.

h

e

FIG. 4. The time evolution of the neuronal membrane poten
Vs ~in mV! for the cases of~a! the uncontrolled neuron showin
very frequent and regular spiking (i s54.0 nA); ~b! the neuron un-
der feedback ‘‘anticontrol,’’ where the target is a state with irreg
lar firing. Here the target is set atI* 540 ms and stiffness of contro
g50.01 in Eq.~31!. Note that the control rapidly leads to irregula
and infrequent spiking, as desired.
9-4
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CONTROLLING NEURONAL SPIKES PHYSICAL REVIEW E63 056209
First we discuss the general strategy of using thresh
mechanisms as a means of control@9#. Consider a genera
N-dimensional dynamical system, described by the evolu
equationẋ5F(x;t), wherex[(x1 ,x2 ,...,xN) are the state
variables, and variablexi is chosen to be monitored and m
nipulated. The prescription for threshold control in this sy
tem is as follows: control will be triggered whenever t
value of the monitored variable exceeds the critical thresh
x* ~i.e., whenxi.x* ) and the variablexi will then be reset
to x* . No knowledge ofF(x) is involved, and no computa
tion is needed to obtain the necessary control. The dynam
continues until the next occurrence ofxi exceeding the
threshold, when control resets its value tox* again.

Note that the threshold control is stroboscopic as
threshold condition is checked at finite intervals oftc . Fur-
thermore resetting the value of the variable tox* should be
very fast compared to the natural dynamics of the unc
trolled system. So the state variables most accessible to
ternal manipulation are the most suitable candidates
thresholding.

In the context of neuronal systems, it is unrealistic
implement the threshold mechanism on the gating varia
or the Ca levels as it is unlikely that one can manipul
these externally with ease. On the other hand, it is natura
try and implement the threshold action on the somatic
dendritic voltagesVs or Vd , as they are much more acce
sible to measurement and monitoring. Thus we demand
variable Vs or Vd must not exceed a prescribed thresho
valueV* (1,V* ,20 mV) and we examine the scope of th
mechanism to yield regular firing behavior.

Figures 5–9 show some representative results of
threshold action for a range of threshold values. It is cl
that the mechanism manages to yield complete regularity
compared with the very irregular and infrequent firing b
havior of the neuron with no thresholding, with the thres
olded variable having the ability to drag the rest of this hig
dimensional system to regular dynamical behavior~see Fig.
5!. The characteristics of the thresholded states, for insta
its ISI, are determined completely by the thresholdV* and
the interval of controltc . The threshold mechanism typ
cally yields two types of behavior: periodic states~with pe-
riod tc) and states with regular spiking~with interspike in-
tervals ranging from about 14 to 60 ms!. Low threshold and
frequent checking of the threshold condition~i.e., smalltc)
lead to the first dynamics and higher thresholds and largetc
lead to regular firing states.

Figure 6 displays the behavior of the neuron under thre
old mechanism on the dendritic potentialVd . It is clear that
the threshold mechanism very effectively brings the sys
to a regular state, as compared with the very irregular
infrequent firing behavior of the neuron with no thresho
ing, given in Fig. 5~a!. As mentioned before, the characte
istics of the thresholded states are determined completel
the thresholdV* and the interval of controltc ~i.e., the in-
terval at which the threshold condition is checked!. For
thresholds up toV* ;5 mV, one obtains periodic states wit
periodicity equal totc , when control intervals are sho
(tc;0.1 ms), as is evident in the example in the inset of F
6~b!. When the threshold condition is checked and reset
05620
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frequently ~say tc;1 ms), one obtains spikes at exact
regular intervals@see Fig. 6~a!#.

Beyond a threshold value of about 5 mV, all thresho
yield regular spiking states, even when control is imp
mented frequently~see Figs. 7 and 8!. Note that these regula
firing states have interspike interval values ranging fro
about 14 to;60 depending on the applied soma currenti s
~see Fig. 7!. Interestingly, the relationship between currenti s
and the interspike interval is avery well defined power law,

I; i s
n , ~32!

where the exponentn;0.6 ~see Fig. 8!.
For thresholding on the somatic voltageVs , one obtains

periodic states for short control intervals (tc;0.1 ms) for
thresholds up to aboutV* ;20 mV @see Fig. 9~b!#. When
control is implemented infrequently, i.e.,tc;1 ms, one ob-
tains ~a! periodic states as usual for small thresholdsV*
,10 mV, and~b! regular spiking states for large threshol
(V* ;10 mV), as is clearly seen in Fig. 9~a!.

When the threshold is very large~close to the upper limits
of the spike,V* .20 mV) or the interval of implementing
control is very large (tc.1 ms), the system under thresho
mechanism yields slightly irregular spiking states, w
mildly fluctuating ISI ~though still much more regular tha
the unthresholded system!.

FIG. 5. The time evolution of the voltagesVs andVd ~in mV!
for the Pinsky-Rinzel neuron for the cases of~a! the uncontrolled
neuron showing infrequent and irregular spiking behavior;~b! the
same neuron, with voltageVd under threshold control, with thresh
old V* 515 mV ~here i s51 nA). Clearly, the controlled neuron
spikes at very regular intervals. The solid lines showVd~—! and the
dashed lines showVs ~---!. The interval at which the threshold
condition is checked is 0.1 ms. The threshold voltage ofV*
515 mV is shown by a dashed line~––!.
9-5
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FIG. 6. The time evolution of the voltageVs ~in mV! for a
Pinsky-Rinzel neuron, withVd under threshold mechanism. He
thresholdV* 53 mV and the interval of controltc is equal to~a! 1
ms and~b! 0.1 ms. The inset in~b! shows a blown up section of th
figure, clearly showing a periodicity oftc .

FIG. 7. The time evolution of the voltageVs ~in mV! for a
Pinsky-Rinzel neuron with voltageVd under threshold control, with
thresholdV* 510 mV, tc50.1, and the applied soma current equ
to ~a! i s50.5 nA and~b! i s54 nA. Clearly the periodicity of spik-
ing is very different for the two cases.
05620
l

FIG. 8. Interspike interval ISI~in ms! vs soma currenti s ~in
nanoamperes! for the Pinsky-Rinzel neuron under threshold cont
of voltage Vd . ~The base of the logarithm in the plot ise.! The
interval at which the threshold condition is checked is 0.1 ms. T
triangles represent a threshold value ofV* 510 mV and the squares
representV* 520 mV.

FIG. 9. The time evolution of the voltageVs ~in mV! for a
Pinsky-Rinzel neuron, withVs under threshold mechanism. Her
thresholdV* 510 mV and the interval for stroboscopic checking
the threshold condition equal to~a! 1 ms and~b! 0.1 ms. The inset
in ~b! shows a blown up section of the figure, clearly showing
periodicity of tc .
9-6
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CONTROLLING NEURONAL SPIKES PHYSICAL REVIEW E63 056209
Note that the control transience is very short in thresh
control. In threshold control, the system does not have to
close to any particular unstable fixed point before imp
menting the control. Once a specified state variable exce
the threshold, it is caught immediately in a stable orbit~see
Fig. 5!. So there is no significant interval between the on
of control and the achievement of control, as a wide inter
is open to targeting. Also, unlike most other control metho
threshold control does not entail any run-time computat
during control.

The perturbations involved in threshold control are n
large compared to the voltage spikes, which are of the o
of 80 mV @see Fig. 5~a!#. We give a few representative con
trol perturbations here: for instance, when the threshold is
mV andtc50.01, themaximumperturbation required to ef
fect control is;0.5 mV, i.e., only;0.005 times the uncon
trolled spike height. The resetting occurs stroboscopically
intervals of 0.01 ms, over a period of 0.5 ms, every 26
~which is the period of spiking obtained from this thresho
value!. That is, for about 25.5 ms in an interval of 26 ms, t
threshold control does not need to act.

We find that the maximum perturbation required f
thresholding is inversely proportional totc . So in order to
reduce the maximum perturbation, we can make the stro
scopic control more frequent. For instance, in the exam
above, if we wanted the maximum perturbation to be o
0.05 mV ~i.e., ;0.0005 times the spike height!, we must
maketc50.001.

For lower threshold values which yield spiking at perio
icity equal to tc , the maximum perturbation is again in
versely proportional totc . So again the maximum perturba
tion can be made small by making the stroboscopic con
more frequent. For instance, for threshold at 0.1 mV, w
tc50.01 ms, the maximum perturbation is 0.0074 mV~i.e.,
104 times smaller than the uncontrolled spike height!, while
for tc50.0001 ms the maximum perturbation is as low
0.000 074 mV.

We also checked that the method works for slightly d
layed threshold action, which is a scenario where the varia
is brought down to the threshold value after a small delay~as
is conceivable in real setups where there may be a s
delay between the detection of the crossing of the thresh
condition and the resetting of the state variable!. We find that
the method is still as effective.

The basis of the marked success of the threshold me
is clear for one-dimensional maps:xn115 f (xn). It is best
rationalized through the fixed points of the effective m
obtained from the chaotic map under threshold mechan
i.e., with the additional constraint off (xn)5x* if f (xn)
.x* . The fixed points of this ‘‘beheaded’’ map under var
ing heights of truncation~i.e., different thresholds! give dif-
ferent superstable periods@9#. In terms of probability densi-
ties, the chaotic map under the threshold mechanism
map large intervals onto severely contracting regions,
this makes the transient period for control very small and
controlled periodic states superstable.

One of the significant unanswered questions regard
threshold control is the following: it is not clear why th
method works so well for higher-dimensional system
05620
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where only one state variable is amenable to threshold c
trol. Unlike in one-dimensional~1D! maps where the orbit is
trapped in a cycle as soon asxn exceeds threshold, in highe
dimensions we are not guaranteed that the remaining v
ables will take the same value at the next threshold con
event. So the multidimensional orbit typically will not ge
trapped in a cycle as soon as one of its variables exceed
threshold. The issue in higher-dimensional systems the
whether or not the thresholded state variable~which is essen-
tially like a pinned variable! can drag the rest of the syste
variables to some fixed dynamical behavior.

Last, note that this control method, though very rapid a
powerful, is ultimately limited by the systems’s dynamic
characteristics. If the system’s dynamics does not yiel
certain desired regular behavior under any threshold,
control method will fail to achieve that particular targe
Most often, though, the richness of chaos allows the dyna
ics to be ‘‘pruned’’ to many different kinds of dynamica
behavior under the threshold mechanism. While for 1D m
it can be proved that all possible periods can in principle
obtained under varying thresholds@9#, this cannot be shown
for continuous-time multidimensional systems. One then
to investigate the scope of the threshold method on differ
state variables in different physical situations, case by c
This was the motivation behind our study on a realistic n
ronal model here, and the investigation has provided c
evidence of the capacity of thresholding on the membr
potentials to yield regular spiking of different periods.

V. DISCUSSION

In summary, here we have presented control algorith
that can be used to achieve desired firing behavior in a n
ronal system. The methods complement each other: one
volves the manipulation of only a parameter, the appl
soma current, and the other involves the manipulation
only a state variable, the membrane potential. Both te
niques have the advantage that they are not measurem
intensive nor do they involve much run-time computation,
knowledge of only the interspike interval is necessary
implement control. The power and robustness of the te
niques is demonstrated for targets ranging from quiet ‘‘no
spiking’’ states to regular firing at different interspike inte
vals, as well as for ‘‘anticontrol’’ to irregular firing patterns

The control of neuronal systems, while in its infancy, is
vital importance for both the understanding and the mani
lation of neural dynamics. Potential applications range fr
the suppression of seizures to computing with living neu
tissue. While in naturally occurring systems isolated neur
rarely appear, there are technological developments in
interfacing of single/few neurons to silicon, as well as e
periments on single neurons, which make the control
single neurons of considerable interest. The extensive e
to utilize single or groups of isolated neurons~interfaced to
silicon substrates! for various purposes~including computa-
tion! is a significant motivation for elucidating mechanism
through which control can be implemented in such sin
9-7
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neuronal systems. Additionally, this is the first step in t
development of higher-dimensional, spatial methods of c
trol for real neuronal arrays and assemblies. Thus the im
tant fact is that the model chosen for control here clos
-

n

05620
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y

models the types of neurons that are being interfaced to
tificial substrates~such as silicon!, and therefore this study
has relevance in the design and implementation of artific
neuroengineered living neural systems.
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