
Physics Letters A 373 (2009) 1346–1351
Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Logic from nonlinear dynamical evolution

K. Murali a,b,∗, Abraham Miliotis a, William L. Ditto a, Sudeshna Sinha c

a J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611-6131, USA
b Department of Physics, Anna University, Chennai 600 025, India
c Institute of Mathematical Sciences, C.I.T. Campus, Chennai 600 113, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 November 2008
Received in revised form 3 February 2009
Accepted 8 February 2009
Available online 14 February 2009
Communicated by C.R. Doering

PACS:
05.45.-a
89.70.+c

Keywords:
Chaotic systems
Digital logic
Computing with chaos

We propose a direct and flexible implementation of logic operations using the dynamical evolution of a
nonlinear system. The concept involves the observation of the state of the system at different times to
obtain different logic outputs. We explicitly implement the basic NAND, AND, NOR, OR and XOR logic
gates, as well as multiple-input XOR and XNOR logic gates. Further we demonstrate how the single
dynamical system can do more complex operations such as bit-by-bit addition in just a few iterations.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Recently there has been a new theoretical direction in harness-
ing the richness of nonlinear dynamics, namely the exploitation of
chaos to do flexible computations. This so-called chaos computing
paradigm [1–8] is driven by the motivation to use new concepts
of physics to build better computing devices. The general strategy
underlying this research activity exploits the determinism of dy-
namics on one hand, and its richness on the other. The determin-
ism allows one to reverse engineer, so to speak and the richness
of dynamical patterns allows flexibility and versatility in accom-
plishing wide-ranging operations. This novel paradigm forms part
of the over-arching attempt to find new ways to exploit physical
phenomena that are well understood in the context of physics, to
do computations, and in particular to bridge dynamical phenom-
ena and computations [9–13].

The fundamental components of computer architecture today
are the logical AND, OR, NOT, and XOR operations, from which
we can directly obtain basic operations like bit-by-bit addition and
memory [14]. A typical 2-input operation act on two inputs I1 and
I2 and outputs a signal O . The type of logic is defined by patterns
of input-to-output mapping represented by the truth table in Ta-

* Corresponding author at: Department of Physics, Anna University, Chennai 600
025, India. Tel.: +1 352 3928934; fax: +1 352 392 9791.

E-mail addresses: kmurali@annauniv.edu, muralikin@ufl.edu (K. Murali).
0375-9601/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.physleta.2009.02.026
Table 1
The truth table of the basic logic operations.

Input NAND AND NOR XOR OR

(0,0) 1 0 1 0 0
(0,1) 1 0 0 1 1
(1,0) 1 0 0 1 1
(1,1) 0 1 0 0 1

ble 1. Now all the above mentioned gates can be constructed by
combining the NOR or NAND operations [14]. Clearly though, this
conversion process is inefficient in comparison with direct imple-
mentation, considering perhaps that such fundamental operations
may be performed a large number of times. So the direct and flex-
ible implementation of gates is useful and could prove very cost
effective. Our problem then is to design a method that yields the
appropriate outputs, for the different fundamental gates, for all
possible sets of inputs.

Towards this aim, in this work we first show the direct and
flexible implementation of all these logical operations utilizing low
dimensional chaos. Importantly the motivation is to use a single
nonlinear element to emulate different logic gates and perform dif-
ferent arithmetic tasks, and further have the ability to switch easily
between the different operational roles. Such a reconfigurable logic
unit may then serve as an ingredient for the construction of gen-
eral purpose reprogrammable hardware.

Arrays of such morphing logic gates can conceivably be pro-
grammed on the run (for instance, by an external program) to be

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:kmurali@annauniv.edu
mailto:muralikin@ufl.edu
http://dx.doi.org/10.1016/j.physleta.2009.02.026


K. Murali et al. / Physics Letters A 373 (2009) 1346–1351 1347
Fig. 1. Schematic diagram of the nonlinear evolution based logic operations. The dotted line denotes successive iteration operation with updated value xn for n > 1. The logic
output is recovered from xn using a comparator with reference threshold value x∗ .
optimized for the task at hand. For instance, they may serve flex-
ibly as an arithmetic processing unit or an unit of memory, and
can be swapped, as the need demands, to be one or the other. Ap-
plications of such reconfigurable hardware includes digital signal
processing, software-defined radio, aerospace and defense systems,
ASIC prototyping, medical imaging, computer vision, speech recog-
nition, cryptography, bioinformatics, computer hardware emulation
and a growing range of other areas. Further advantages of recon-
figurable hardware include the ability to re-program in the field,
to fix bugs, lower non-recurring engineering costs and implement
coarse-grained architectural approaches [15].

In the present work, we suggest a method for obtaining logic
output from a nonlinear system using the time evolution of the
state of the system. Namely, our concept uses the nonlinear char-
acteristics of the time dependence of the state of the dynamical
system to extract different responses from the system at different
time instances. The highlight of this method is that a single non-
linear system is capable of yielding a time sequence of logic opera-
tions. We explicitly demonstrate the implementation of sequences
of fundamental logic gates, as well as the direct implementation of
bit-by-bit addition through such a sequence.

The organization of this Letter is as follows: In Section 2, we
demonstrate the basic principles of obtaining sequences of dif-
ferent logic operations using the evolution of nonlinear iterative
maps. Section 3 presents a specific realization of arithmetic op-
erations using an one-dimensional chaotic map and a sequence
of logic operations. Section 4 presents the extension of this ap-
proach for implementing multi-input logic gate operations. Finally,
Section 5 discusses and summarizes the results.

2. Generation of a sequence of logic operations using iterates
of a chaotic map

Now we outline a method for obtaining all basic logic gates us-
ing different dynamical iterates of a single nonlinear system. In
particular consider a chaotic system whose state is represented
by a value x. The state of the system evolves according to some
dynamical rule. For instance, the updates of the state of the ele-
ment from time n to n + 1 may be well described by a map, i.e.,
xn+1 = f (xn), where f is a nonlinear function.

Now this element receives inputs before the first iteration (i.e.,
n = 0) and outputs a signal after evolving for a (short) specified
time or number of iterations.

In our technique all the basic logic gate operations, NAND, AND,
NOR, XOR and OR (see Table 1 for the truth table), involve the
following steps:

(1) Inputs (for a 2 inputs operation):

x → x0 + I1 + I2

where x0 is the initial state of the system, and I = 0 when
logic input is zero, and I = δ (where δ is some positive con-
stant) when logic input is one.

So we need to consider the following three situations:
Case 1. Both I1, and I2 are 0 (row 1 in Table 1) i.e., the initial state
of the system is x0 + 0 + 0 = x0.

Case 2. Either I1 = 1, I2 = 0 or I1 = 0, I2 = 1 (row 2 or 3 in Table 1)
i.e., the initial state is x0 + 0 + δ = x0 + δ + 0 = x0 + δ.

Case 3. Both I1 and I2 are 1 (row 4 in Table 1), i.e., the initial state
is x0 + δ + δ = x0 + 2δ.

(2) Chaotic updates over some prescribed number of steps, i.e.,
x → fn(x), where fn(x) is the nth iterate of the evolution of
the function f (x).

(3) The evolved state fn(x) yields a logic output at iteration n as
follows:

Logic output = 0 if f (x) � x∗,

Logic output = 1 if f (x) > x∗,

where x∗ is a reference threshold value.
Since the system is chaotic, in order to specify the initial x0

accurately one needs a controlling mechanism. For instance one
can employ a threshold controller to set the initial value x0. The
action of threshold control or limit control is to clip the state of
a system to some prescribed value. The theory and experimental
verification of this efficient control method is given in [16,17]. Note
that the state of the system can be reset to x0 at any time using
such a controller, and after that the system can be ‘re-used’ as
another logic gate, as the situation demands. For logic recovery, the
updated or evolved value of f (x) is compared with x∗ value using
a comparator action as shown in Fig. 1. This recovered output can
be properly rescaled to match with input logic levels in-terms of δ,
so that further concatenating these logic gates is possible.1

In order to obtain all the desired input-output responses of the
different gates, as displayed in Table 1, we need to satisfy the
conditions enumerated in Table 2 simultaneously. Note that the
symmetry of inputs reduces the four conditions in the truth Ta-
ble 1 to three distinct conditions, with rows 2 and 3 of Table 1
leading to condition 2 in Table 2.

So given dynamics f (x), one must find values of a reference
threshold x∗ and initial state x0 satisfying the conditions derived
from the truth table to be implemented. Table 2 shows the exact
values of the initial x0 and reference threshold x∗ when

f (x) = 4x(1 − x). (1)

Here x ∈ [0,1]. The constant δ, common to all logical gates, is fixed
as 0.25. The above inequalities have many possible solutions based
on the size of δ. For example, by setting δ = 0.25, we can simulate
the equation for the different time shifts that each gate requires.

1 The ease of concatenation of logic gates morphing through time evolution is still
an open issue, and further engineering oriented, design specific, work is necessary
in order to demonstrate how small and large groups of such logic gates can be
integrated into computer architectures.



1348 K. Murali et al. / Physics Letters A 373 (2009) 1346–1351
Thus the inputs setup the initial state x0 + I1 + I2. Then the sys-
tem evolves over n iterative time steps to an updated state xn . The
evolved state is compared to a monitoring threshold x∗ (refer to
Fig. 1), at every n. If the state at iteration n, is greater than x∗ a
logical 1 is the output and if the state is less than or equal to x∗
a logical 0 is the output. This process is repeated for subsequent
iterations. Relating inputs with the obtained outputs provides us
the operation that is performed at a specific iteration. For illustra-
tive purposes, the graphical iteration representation of Eq. (1) for

Fig. 2. Graphical iteration representation of the logistic map with three logic initial
inputs (a) = x0, (b) = x0 + δ and (c) = x0 + 2δ corresponding to Table 2. Here x∗ =
0.75 is used to recover logic operations NAND, AND, NOR and XOR. For OR logic
operation x∗ = 0.4 is utilized.
various initial values corresponding to different logic inputs is de-
picted in Fig. 2. The initial values are denoted by labels a, b and c.
For clarity, the state of xn for first 5 iterations (0 < n < 5) can be
identified from this diagram. It is interesting to note that first 5 it-
erations satisfy the realization of basic logic gates as indicated in
Table 1. In addition, subsequent iterations beyond n > 5 continue
to yield different logic gate operations including XNOR operation.
A more exclusive template of various logic responses being admit-
ted by this system (Eq. (1)) for different iterations n versus range
of x0 values is depicted in Fig. 3. To generate this template, the
representative value of δ is fixed as 0.25. The value x∗ = 0.75 is
used for 1 � n � 4 and x∗ = 0.4 is used for n > 4. Fig. 3 shows the
logic behavior arising from a system with initial state x0 evolving
over n iterative steps, with n = 1,2, . . . ,10. It is clear from this fig-
ure, that while the system will always yield some logic behavior,
the robustness of the response, with respect to initial state spec-
ification is lost after n around 5 or so. This is expected from the
chaotic nature of the dynamics, and so for large n the response is
extremely sensitive to the precision with which x0 is set. However
note that one need not go to iterates beyond 5 or so, as all ba-
sic logic outputs can be obtained within the first few iterates, in
large robust ranges of initial state x0. After n around 5 or so, the
system can be re-set, for instance by the threshold controller men-
tioned earlier, and the nonlinear system can be ‘re-used’ after this
re-initialization.

3. Implementation of bit-by-bit addition

We now demonstrate how one can obtain the ubiquitous bit-
by-bit arithmetic addition, involving two logic gate outputs, in con-
Table 2
Necessary and sufficient conditions to be satisfied by a chaotic element in order to implement the logical operations NAND, AND, NOR, XOR and OR during different iterations.
Here x0 = 0.325 and δ = 0.25. x∗ = 0.75 is used for NAND, AND, NOR, XOR logic operations and x∗ = 0.4 is fixed for OR logic operation.

LOGIC NAND AND NOR XOR OR

Iteration ‘n’ 1 2 3 4 5

Condition 1: x1 = f (x0) > x∗ f (x1) < x∗ f (x2) > x∗ f (x3) < x∗ f (x4) < x∗
Logic input (0,0) x1 = 0.88 x2 = 0.43 x3 = 0.98 x4 = 0.08 x5 = 0.28
x0 = 0.325

Condition 2: x1 = f (x0 + δ) > x∗ f (x1) < x∗ f (x2) < x∗ f (x3) > x∗ f (x4) > x∗
Logic input (0,1) or (1,0) x1 = 0.9775 x2 = 0.088 x3 = 0.33 x4 = 0.872 x5 = 0.45
x0 = 0.575

Condition 3: x1 = f (x0 + 2δ) < x∗ f (x1) > x∗ f (x2) < x∗ f (x3) < x∗ f (x4) > x∗
Logic input (1,1) x1 = 0.58 x2 = 0.98 x3 = 0.1 x4 = 0.34 x5 = 0.9
x0 = 0.825

Fig. 3. Template showing different logic patterns for range of x0 (0 to 0.5) versus iteration n (0 to 10). Here x∗ = 0.75 for 1 � n � 4 and x∗ = 0.4 for n > 4. δ is fixed as 0.25.



K. Murali et al. / Physics Letters A 373 (2009) 1346–1351 1349
Table 3
The truth table of full adder, necessary and sufficient conditions to be satisfied by the logistic map. State values x1 (iteration n = 1) and x2 (iteration n = 2) are used to
obtain Cout and S , respectively. Here x∗

1 = 0.8, x∗
2 = 0.4, x0 = 0.0 and δ ≈ 0.23.

Input bit for number (A) Input bit for number (B) Carry bit input (Cin) Cout S Cout S

0 0 0 0 0 x1 = f (x0) � x∗
1 x2 = f (x1) � x∗

2

0 0 1 0 1 x1 = f (x0 + δ) � x∗
1 x2 = f (x1) > x∗

2

0 1 0 0 1 x1 = f (x0 + δ) � x∗
1 x2 = f (x1) > x∗

2

0 1 1 1 0 x1 = f (x0 + 2δ) > x∗
1 x2 = f (x1) � x∗

2

1 0 0 0 1 x1 = f (x0 + δ) � x∗
1 x2 = f (x1) > x∗

2

1 0 1 1 0 x1 = f (x0 + 2δ) > x∗
1 x2 = f (x1) � x∗

2

1 1 0 1 0 x1 = f (x0 + 2δ) > x∗
1 x2 = f (x1) � x∗

2

1 1 1 1 1 x1 = f (x0 + 3δ) > x∗
1 x2 = f (x1) > x∗

2

secutive iterations, with a single one-dimensional chaotic element
as obeying Eq. (1). A simple 1-bit binary arithmetic addition re-
quires a full adder logic which adds three individual bits together
(two bits being the digit inputs and the third bit assumed to be
carry from the addition of the next least-significant bit addition
operation, known as ‘Cin’). A typical full-adder requires two half-
adder circuits and an extra OR gate. In total, the implementation
of a full-adder requires five different gates (two XOR gates, two
AND gates and one OR gate) [14]. However in the present direct
implementation by utilizing the dynamical evolution of a single logis-
tic map, we need only two iterations of a single element to implement a
full-adder.

Now by choosing the δ = 0.23 and x0 = 0.0, the truth table,
summary of the necessary and sufficient conditions to be satis-
fied for the full-adder operation is given in Table 3. The Carry bit
output Cout and the Sumbit output S are recovered from first and
second iterations of map Eq. (1), respectively. Here thresholds x∗

1
and x∗

2 for 1st and 2nd iterations are fixed as 0.8 and 0.4, respec-
tively. If x1 < x∗

1 then Cout is logic zero or else it is logic one.
Also if x2 < x∗

2 then S is logic zero or else it is logic one. Now
we will employ three steps to implement the full-adder logical op-
erations:

Step 1. Initialization of the state of the system to x0 and addition
of external inputs,

x → x0 + I1 + I2 + I3

where x0 is the initial state of the system, and I = 0 when logic
input is zero, and I = δ (where δ is some positive constant) when
logic input is one. Here I1, I2 and I3 correspond the input num-
ber A, input number B and carry input C in respectively of Table 3.
So we need to consider the following four situations:

Case 1. If all inputs are 0 (row 1 in Table 3) i.e., the initial state of
the system is

x0 + 0 + 0 + 0 = x0.

Case 2. If any one of the input equals 1 (row 2, 3 and 5 in Table 3)
i.e., the initial state is

x0 + 0 + 0 + δ = x0 + 0 + δ + 0 = x0 + δ + 0 + 0 = x0 + δ.

Case 3. If any two inputs equal to 1 (row 4, 6 and 7 in Table 3),
i.e., the initial state is

x0 + 0 + δ + δ = x0 + δ + 0 + δ = x0 + δ + δ + 0 = x0 + 2δ.

Case 4. If all inputs equal to 1 (row 8 in Table 3), i.e., the initial
state is

x0 + δ + δ + δ = x0 + 3δ.
Table 4
The truth table of the 3-input XOR and XNOR logic operations, necessary and suffi-
cient conditions to be satisfied by the map. State value x2 (iteration n = 2) is used
for logic operation recovery. Here x∗ = 0.5 and δ ≈ 0.25.

I1 I2 I3 XOR XNOR XOR (x0 = 0) XNOR (x0 = 0.25)

0 0 0 0 1 x2 � x∗ x2 > x∗
0 0 1 1 0 x2 > x∗ x2 � x∗
0 1 0 1 0 x2 > x∗ x2 � x∗
1 0 0 1 0 x2 > x∗ x2 � x∗
0 1 1 0 1 x2 � x∗ x2 > x∗
1 0 1 0 1 x2 � x∗ x2 > x∗
1 1 0 0 1 x2 � x∗ x2 > x∗
1 1 1 1 0 x2 > x∗ x2 � x∗

Step 2. Chaotic evolution for two time steps, of the initial state
given above, via Eq. (1).

Step 3. The evolved state fn(x) yields the logic output as follows:

Logic output = 0 if fn(x) � x∗
n,

Logic output = 1 if fn(x) > x∗
n,

where x∗
n is a monitoring threshold, with n = 1,2.

In this representative example of implementing full adder op-
eration, applying step 3 to the first two iterative values (n = 1 and
2) of Eq. (1), i.e., f (x0) = x1 and f (x1) = x2 yield the two outputs
encoding Cout and S in Table 3. So basically an element will take
the three inputs A, B and Cin and produce the carry for the next
addition on the very first update. This new carry can of course be
immediately supplied to the next element ready to perform the
addition of the next bits, while the current sum (S) is calculated
on the second update. However, we wish to emphasize that the
time delay of occurrence between Cout and S (through iteration
delay) can be compensated by adapting an interface circuitry(in ac-
tual hardware implementation) like sample-and-hold circuits with
suitable sampling pulses [18]. Representative timing waveforms for
the full-adder implementation are depicted in Fig. 4.

As a final note, consider that we can allow the map to evolve
beyond the second iteration (n > 2) just as we carried-out for two
inputs case referred in Section 2 and obtain different logical oper-
ations.

4. Implementation of multi-input logic gates

As in Section 2, consider a single chaotic element to be the
logistic map model described by Eq. (1). Now this basic ele-
ment can be further used to do specific logical operations with
three or more logical inputs. The basic modification simply in-
volves adding another input to the conventional 2-input logic
gate structure. Three or more input logic gates are advantageous



1350 K. Murali et al. / Physics Letters A 373 (2009) 1346–1351
Fig. 4. Timing sequences for full-adder: First input A (panel 1), second input B (panel 2), third input Cin (panel 3), first iteration output x1 (panel 4), second iteration output
x2 (panel 5), carry-out (panel 6) and sum (panel 7). Abscissa corresponds to time increment of each initialization.
because they require less complexity in actual experimental cir-
cuit realization than that of coupling conventional 2-input logic
gates [14].

We consider the weights (δ) given to each logic input to be the
same for the 2-input and 3-input gates, but the threshold value
x∗ will be different. In a manner exactly like the 2-input gates
above, appropriate choices of x0 and x∗ can be found that lead
to the realization of the 3-input XOR and XNOR logic operations.
The truth table for 3-input XOR and XNOR logic gate operations,
the necessary and sufficient conditions to be satisfied by the map
is shown in Table 4. In this representative case, the state value
x2 (i.e., at iteration n = 2) of the logistic map is used uniformly
for logic recovery. The threshold value x∗ and δ are fixed as 0.5
and 0.25, respectively. For morphing between XOR and XNOR logic



K. Murali et al. / Physics Letters A 373 (2009) 1346–1351 1351
operations, the initial values are fixed as x0 = 0 and x0 = 0.25, re-
spectively.

5. Discussion

Previous results in chaos computing have shown that a single
nonlinear dynamical system can (with proper tuning of parameters
and control inputs) become any logic gate. Additionally it has been
shown that such nonlinear dynamical systems can be morphed to
become any logic gate [1–3]. Our discovery in this work lies in the
remarkable result that the varied temporal patterns embedded in
the dynamical evolution of nonlinear systems are capable of per-
forming sequences of logic operations in time (or iterates) and in
contrast with previous methods. Thus minimal control is needed
thereby we only invoke control mechanism on initialization, from
there on we just monitor the state and the morphing between
gates takes place in time evolution, instead of varying the control
parameters. So one can set a global parameter and let time evolve
the logic, rather than micromanage each morphing step through
a separate parameter change. This approach has the potential to
lead to enhanced flexibility in the morphing ability of a nonlinear
computing device.

The implementation of a sequence of logic functions in time,
as described above, is now another mechanism through which
computer architectures based upon the chaos computing approach
can be optimized for better performance. In particular, we have
shown explicitly how multiple sequentially connected nonlinear
maps with unidirectional coupling (through state variables) or suc-
cessive iterations of a single nonlinear map can perform bit-by-bit
arithmetic addition through a sequence of logic operations with
a small number of elements. With these fundamental ingredients
in hand it is conceivable to build simple, fast, cost effective, and
general-purpose computing devices, which are more flexible than
statically wired hardware. It becomes clear that exploiting not just
the pattern formation of nonlinear dynamical systems, but the for-
mation of sequences of such patterns, produced naturally by such
systems, may prove to be a key ingredient towards making non-
linear dynamical computational architectures a real alternative to
conventional static logic computer architectures.

Acknowledgements

We gratefully acknowledge the support from the Office of Naval
Research [grant No. N00014-02-11019] and from Chaologix, Inc.

References

[1] S. Sinha, W.L. Ditto, Phys. Rev. Lett. 81 (1998) 2156;
S. Sinha, W.L. Ditto, Phys. Rev. E 60 (1999) 363.

[2] S. Sinha, T. Munakata, W.L. Ditto, Phys. Rev. E 65 (2002) 036216.
[3] K. Murali, S. Sinha, W.L. Ditto, Int. J. Bifur. Chaos Appl. Sci. Eng. 13 (2003) 2669;

K. Murali, S. Sinha, W.L. Ditto, Phys. Rev. E 68 (2003) 016205;
K. Murali, S. Sinha, I. Raja Mohamed, Phys. Lett. A 339 (2005) 39.

[4] K.E. Chlouverakis, M.J. Adams, Electron. Lett. 41 (2005) 359.
[5] D. Cafagna, G. Grassi, Int. Sym. Signals Circuits Syst. (ISSCS 2005) 2 (2005) 749.
[6] M.R. Jahed-Motlagh, B. Kia, W.L. Ditto, S. Sinha, Int. J. Bifur. Chaos Appl. Sci.

Eng. 17 (2007) 1955.
[7] K. Murali, S. Sinha, Phys. Rev. E 75 (2007) 025201(R).
[8] B. Prusha, J. Lindner, Phys. Lett. A 263 (1999) 105.
[9] J.P. Crutchfield, K. Young, Phys. Rev. Lett. 63 (1989) 105;

J.P. Crutchfield, Physica D 75 (1994) 11.
[10] N. Margolus, Physica D 10 (1984) 81;

T. Toffoli, N. Margolus, Cellular Automata Machines: A New Environment for
Modelling, MIT Press, 1987;
T. Toffoli, N. Margolus, Physica D 47 (1990) 263.

[11] C. Moore, Phys. Rev. Lett. 64 (1990) 2354.
[12] A.V. Holden, J.V. Tucker, H. Zhang, M.J. Poole, Chaos 2 (1992) 367.
[13] A. Toth, K.J. Showalter, J. Chem. Phys. 103 (1995) 2058.
[14] M.M. Mano, Computer System Architecture, third ed., Prentice Hall, Englewood

Cliffs, NJ, 1993;
T.C. Bartee, Computer Architecture and Logic Design, McGraw–Hill, New York,
1991.

[15] G. Taubes, Science 277 (1997) 1935.
[16] S. Sinha, Phys. Rev. E 49 (1994) 4832;

S. Sinha, Phys. Rev. E 63 (2001) 036212;
S. Sinha, W.L. Ditto, Phys. Rev. E 63 (2001) 056209;
S. Sinha, in: R. Sahadevan, M. Lakshmanan (Eds.), Nonlinear Systems, Narosa,
2002, p. 309.

[17] K. Murali, S. Sinha, Phys. Rev. E 68 (2003) 016210.
[18] K. Murali, A. Miliotis, W.L. Ditto, S. Sinha, M.L. Spano, Preprint, unpublished,

2009.


	Logic from nonlinear dynamical evolution
	Introduction
	Generation of a sequence of logic operations using iterates of a chaotic map
	Implementation of bit-by-bit addition
	Implementation of multi-input logic gates
	Discussion
	Acknowledgements
	References


