
Regular and chaotic states in a local map description of sheared nematic liquid crystals

S. M. Kamil,* Sudeshna Sinha,† and Gautam I. Menon‡

The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600013, India
�Received 25 January 2008; revised manuscript received 10 April 2008; published 18 July 2008�

We propose and study a local map capable of describing the full variety of dynamical states, ranging from
regular to chaotic, obtained when a nematic liquid crystal is subjected to a steady shear flow. The map is
formulated in terms of a quaternion parametrization of rotations of the local frame described by the axes of the
nematic director, subdirector, and the joint normal to these, with two additional scalars describing the strength
of ordering. Our model yields kayaking, wagging, tumbling, aligned, and coexistence states, accommodated in
a phase diagram which closely resembles phase diagrams obtained using representations of the dynamics
which are based on ordinary differential equations. We also study the behavior of the map under periodic
perturbations of the shear rate. Such a map can serve as a building block for the construction of lattice models
of the complex spatiotemporal states predicted for sheared nematics.
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Driven complex fluids exhibit an unusual variety of dy-
namical states �1–7�. When such fluids are sheared uni-
formly, the stress response is regular at very small shear
rates. However, at larger shear rates the response is often
intrinsically unsteady, exhibiting oscillations in space and
time as a prelude to intermittency and chaos �6–8�.

Such chaos associated with rheological response or
“rheochaos” occurs in regimes where the Reynolds number
is very small. It must thus be a consequence of constitutive
and not convective nonlinearities, originating in the coupling
of the flow to structural or orientational variables describing
the local state of the fluid �9,10�. The diverse possibilities for
internal degrees of freedom in complex fluids, such as the
orientation of nematogenic molecules, layer stacking in
lamellar and onion phases, and heterogeneities arising from
local jamming in colloidal suspensions, implies that the
study of the rheology of complex fluids should illuminate a
variety of nontrivial steady states in driven soft matter.

Recent rheological studies of “living polymers,” solutions
of wormlike micelles in which the energies for scission and
recombination are thermally accessible, obtain an oscillatory
response to steady shear at low shear rates which turns cha-
otic at larger shear rates �6,7�. It has been argued that a
hydrodynamic description of this behavior requires a field
describing the local orientation of the polymer, motivating a
treatment of the problem of an orientable fluid, such as a
nematic, in a uniform shear flow �11–13�.

Nonlinear relaxation equations for the symmetric, trace-
less second rank tensor Q characterizing local order in a
sheared nematic have been derived �11–18�. Assuming spa-
tial uniformity, a system of five coupled ordinary differential
equations �ODEs� for the five independent components of Q
in a suitable tensor basis is obtained. Solving this system of
equations yields a complex phase diagram admitting many
states—aligned, tumbling, wagging, kayak-wagging, kayak-
tumbling, and chaotic—as functions of the shear rate �̇ and a

phenomenological relaxation time which is a parameter in
the equations of motion �19–21�. Recent work adds spatial
variations: Numerical studies of the partial differential equa-
tions thus obtained yield a phase diagram containing spa-
tiotemporally regular, intermittent, and chaotic states �22,23�.

The degrees of freedom which enter a coarse-grained de-
scription of an orientable fluid are mesoscopic. Spatiotempo-
ral structure arises from the coupling of locally ordered re-
gions, through processes such as molecular diffusion, flow-
induced dissipation, and advection. A powerful approach to
understanding complex spatiotemporal dynamics is based on
the study of coupled map lattices, a numerical scheme in
which maps placed on the sites of a lattice evolve both via
local dynamics as well as through couplings to neighboring
sites �24�. However, the utility of this methodology in a spe-
cific context is often severely limited by the availability of
local maps able to describe the spatially uniform case. This
paper addresses this requirement in the context of a model
for rheochaos, proposing the first local map description of
the regular and chaotic states obtained in sheared nematics.

There is, in general, no systematic procedure for the con-
struction of such maps. However, it is reasonable to require
that any such map should accurately reproduce the full vari-
ety of states obtained through the study of the corresponding
ODEs. It should also enable useful physical insights through
a sensible choice of physical variables. One obvious possi-
bility is simply the discretization of the governing ODEs.
Such a choice of variables, however, is not particularly illu-
minating as these equations are formulated in terms of the
components of Q in a specific space-fixed tensor basis, rather
than in terms of variables more natural to the problem.

We have thus explored an alternative formulation of this
problem, constructing a local map in terms of quaternion
variables. These variables encode the dynamics of the or-
thogonal set of axes associated with the eigenvectors of Q,
i.e., the director, subdirector, and the joint normal to these.
Our approach incorporates biaxiality, is formulated in terms
of physically accessible variables, and is computationally
straightforward to implement. Our results, summarized in the
phase diagram of Fig. 1, are in good agreement with previ-
ous work based on ODEs �21,28�, but provide an efficient
alternative to such methods �25�.
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Defining b̂¬ 1
2 �b+bT�− 1

3 �tr b�� to be the symmetric-
traceless part of the second-rank tensor b, the equation of
motion for Q in a passive velocity field is �11,21�

dQ

dt
− 2� · Q̂ − 2�� · Q̂ + �Q

−1� = − �2
�ap

�a
� , �1�

where the tensor �= 1
2 ���v�T−�v�, �= 1

2 ���v�T+�v�, and
�v is the velocity gradient tensor, with v= �̇yex, where ex is
a unit vector in the x direction. The velocity is along the
x direction the velocity gradient is along the y direction,
while z is the vorticity direction. The quantities �a�0 and
�ap are phenomenological quantities related to relaxation
times, � describes the change of alignment caused by �
and �=�� /�Q, with ��Q�= 1

2AQ :Q− 1
3
�6B�Q ·Q� :Q

+ 1
4C�Q :Q�2. The notation Q :Q represents QijQji, with re-

peated indices summed over. Here A=A0�1−T� /T�, and B
and C are constrained by the conditions A0�0, B�0,
C�0, and B2�

9
2A0C.

Scaling t= t��a /Ak, v=v�Ak /�a, and a=a�ak, Eq. �1� can

be written in dimensionless form, dQ�

dt� −2�� ·Q�̂−2��� ·Q�̂

+ (�Q�−3�6Q� ·Q�̂+2�Q� :Q��Q�)=�3
2	k�

�, where Ak
=A0�1−T� /Tk�=2B2 /9C ,ak=aeq�Tk�=2B /3C is the �non-
zero� equilibrium value of the scalar order parameter
a at the transition temperature Tk, 	k=− 2

3
�3

�ap

�aak
and

�= �1− T�

T � / �1− T�

Tk
� is the reduced temperature.

The Q tensor admits the following parametrization: Qij

=
3s1

2 �ninj −
1
3�ij�+

s2

2 �mimj − lilj�, where s1 and s2 represent the
magnitude of the ordering along n �the director� and m �the
subdirector�, with n and m unit vectors and l=n
m. The
dynamics of Q thus involves both the dynamics of the frame
defined by n , m, and l as well as the dynamics of s1 and s2.

The frame dynamics can be represented in many equiva-
lent ways, such as through coordinate matrices, axis-angle or
Euler-angle representations. However, the coordinate matrix
representation requires a large number of parameters, the
axis-angle representation suffers from redundancy, and the
use of the Euler-angle representation is marred by the
“gimbal-lock” problem �26�. Our parametrization of the
frame dynamics uses quaternion variables, providing an el-
egant, compact, and numerically stable alternative to these
representations.

Equations for ṅ, ṁ, and l̇ as well as for the order param-
eter amplitudes ṡ1 and ṡ2 can be derived by considering a
reference frame in which the director and subdirector are
stationary �body frame�. In the body frame, denoted by
primed vectors, the director can be chosen to be n�
= �1,0 ,0�, and the subdirector to be m�= �0,1 ,0�, with l�
= �0,0 ,1�. The transformation matrix A which maps vectors
from the laboratory frame to the body frame, can be defined
in terms of quaternion parameters �e0 , . . . ,e3� constrained by
e0

2+e1
2+e2

2+e3
2=1. This transformation matrix has the form

A = � nx ny nz

mx my mz

lx ly lz
�

= �e0
2 + e1

2 − e2
2 − e3

2 2�e1e2 + e0e3� 2�e1e3 − e0e2�
2�e1e2 − e0e3� e0

2 − e1
2 + e2

2 − e3
2 2�e2e3 − e0e1�

2�e1e3 + e0e2� 2�e2e3 − e0e1� e0
2 − e1

2 − e2
2 + e3

2 	 .

The quantities n= �nx ,ny ,nz� , m= �mx ,my ,mz�, and l
= �lx , ly , lz� are easily obtained using this mapping, yielding
ODEs for the parameters s1 ,s2 ,e0 ,e1 ,e2 ,e3. These are con-
verted into a map using a first-order Euler scheme. After
each discrete time step, we renormalize the quaternion vari-
able. Choosing � and � equal to zero for all of the results
reported here in common with earlier work, our map is then
defined through

s1
t+1 = s1

t + �
1

6
�9�6s1

2 − 18s1
3 − 3�6s2

2 − 6s1s2
2

+ 3�6nxny�̇	k��t

,

s2
t+1 = s2

t + �
− 3�6s1s2 − 3s1
2s2 − s2

3

−�3

2
�lxly − mxmy��̇	k�t

,

e0
t+1 = e0

t + ��1

4
�̇e3 +

1

4
�3

2
�̇
−

�lymx + lxmy�e1

s2

+
2�lynx + lxny�e2

3s1 + s2
+

2�mynx + mxny�e3

− 3s1 + s2
�	kt

,

FIG. 1. �Color online� The phase diagram of steady states in our
model, plotted as a function of 	k and the shear rate �̇ �see text for
definitions�, illustrating regimes in which the following steady
states are obtained for a generic initial condition: An aligned state
denoted as A, a tumbling state labeled as T, a wagging state W, a
kayak-tumbling state KT, a kayak-wagging state denoted by KW,
and a complex state denoted as C. This phase diagram closely re-
sembles phase diagrams plotted in Ref. �21�.
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e1
t+1 = e1

t + ��1

4
�̇e2 +

1

4
�3

2
�̇
 �lymx + lxmy�e0

s2

−
2�mynx + mxny�e2

− 3s1 + s2
+

2�lynx + lxny�e3

3s1 + s2
�	kt

,

e2
t+1 = e2

t + ��−
1

4
�̇e1 +

1

4
�3

2
�̇
−

2�lynx + lxny�e0

3s1 + s2

+
2�mynx + mxny�e1

− 3s1 + s2
+

�lymx + lxmy�e3

s2
�	kt

,

e3
t+1 = e3

t + ��−
1

4
�̇e0 +

1

4
�3

2
�̇
−

2�mynx + mxny�e0

− 3s1 + s2

−
2�lynx + lxny�e1

3s1 + s2
−

�lymx + lxmy�e2

s2
�	kt

. �2�

We choose �=0.01 for all our calculations. �The phase
boundaries shown in Fig. 1 exhibit a weak dependence on
�t. However, provided �t is chosen small enough, this de-
pendence may be neglected.� The superscript t indicates that
the values of the variables are taken at the tth discrete time
step �27�. The control parameters are the dimensionless shear
rate �̇ and 	k. In place of the five coupled ODEs used in the
conventional parametrization of the dynamics of Q, we have
six equations constrained by the normalization requirement,
thereby conserving the number of degrees of freedom.

In our numerical analysis of the map, we start typically
from random initial conditions, omitting sufficient transients
��105 time steps� to ensure that the asymptotic attractor of
the dynamics is reached. Our analysis includes inspection of
the �i� power spectrum, �ii� phase portraits, �iii� bifurcation
diagrams, and �iv� time series of the different relevant vari-
ables.

Figures 2 and 3 show the variety of states obtained in our
numerical calculations. Each subfigure, labeled as Figs.
2�a�–2�c� and Figs. 3�a�–3�c�, has the following structure:
The first inset, labeled �i� for all figures, describes the time
dependence of nz, the z component of the director, and the
angle � made by the projection of the director on the x-y
plane with the x axis. The second inset, labeled �ii� for all
figures, plots the quantities measuring the amount of order-
ing along the director and subdirector against each other,
providing the attractor of the system in the s1-s2 plane for a
generic initial condition. The main panel in each of the sub-
figures shows the power spectrum of s1, log10��A�f��2�,
against frequency f on a semilogarithmic plot.

The following states are easily identified: �I� An aligned
state denoted as A in the phase diagram of Fig. 1, but omit-
ted, for brevity, from the states shown in Fig. 2 and Fig. 3. In
the aligned state, neither the frame orientation, nor s1 and s2,
vary in time. The director is aligned with the flow at a fixed
angle; �II� a tumbling state, in which the director lies in the
shear plane �the xy plane� and rotates about the vorticity
direction �the z axis�. Figure 2�a��i� indicates that this state is
a stable in-plane state, since the z component of the director
is zero. Also, the angle made by the projection of the director

on the x-y plane varies smoothly between � /2 and � /2.
Figure 2�a��ii� shows the periodic character of this state. This
state is labeled as T in the phase diagram of Fig. 1; �III� a
wagging state, in which the director lies in the shear plane,
but oscillates between two values. Note that Fig. 2�b��i� in-
dicates that this state is a stable in-plane state. Also, the
director oscillates back and forth in-plane as indicated in Fig.
2�b��ii�. Figure 2�b� shows that this state is a periodic state

FIG. 2. �Color online� The sequence of three main panels shows
the power spectrum associated with states in the regimes labeled �a�
T and �b� W in the phase diagram of Fig. 1. The topmost panel �c�
shows a mixed state �m� �not shown separately in Fig. 1�, associated
with the boundary between W and T. The inset labeled �i� in all of
these panels shows typical plots of the time dependence of the z
component of the director nz and the angle � made by the projec-
tion of the director on the x-y plane with the x axis. The insets
labeled �ii� in all of these panels show the trajectory in the s1-s2

plane.

FIG. 3. �Color online� The sequence of three main panels shows
the power spectrum associated with states in the regimes labeled �a�
KT �kayak-tumbling�, �b� KW �kayak-wagging�, and �c� C �com-
plex or chaotic� in the phase diagram of Fig. 1. The inset labeled �i�
in all these panels shows typical plots of the time dependence of the
z component of the director nz and the angle � made by the projec-
tion of the director on the x-y plane with the x axis. The insets
labeled �ii� in all of these panels show the trajectory in the s1-s2

plane.
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with sharp �-function peaks in the power spectrum. These
states are denoted as W in the phase diagram in Fig. 1.

In addition to the states described above, we obtain �IV� a
kayak-tumbling state, equivalent to the tumbling state, but in
which the director is out of the shear plane. Thus, as shown
in Fig. 3�a� nz�0 and the projection of the director on the xy
plane rotates through a full cycle. Such states are temporally
periodic, as shown in Fig. 3�a�; the regular cycles evident in
the map of s1 vs s2 �Fig. 3�a��ii�� is a further indication of
periodic behavior. These states are noted as KT in the phase
diagram of Fig. 1; �V� a kayak-wagging state where, as in
KT, the director is out of plane, but the projection of the
director on the shear plane oscillates between two values.
The properties of such states are illustrated in Fig. 3�b�. Such
states are again temporally periodic. The cyclic trajectory of
the system in the s1-s2 plane �Fig. 3�b��ii�� further confirms
such periodic behavior. These states are denoted by KW in
the phase diagram of Fig. 1; �VI� a mixed state, typically
found close to the boundaries between wagging and tum-
bling states, whose properties are illustrated in Fig. 2�c�. In
such states, the director exhibits both oscillation and com-
plete rotations. Power spectra obtained at the boundaries of
this phase, for example, near 	k=0.99 and �̇=4.0, have a
broad range of frequencies; and �VII� a complex state, in
which the director lies out of the shear plane but both oscil-
lates and rotates. The complex phase exhibits chaotic behav-
ior, as can be seen in Fig. 3�c�. Note that the � function peaks
in the power spectrum exhibited by the periodic states dis-
cussed earlier have broadened into a continuum of frequen-
cies. The plot of s1 vs s2 displays no regular structure. These
states are noted as C in the phase diagram in Fig. 1. In
addition to these states, we also obtain a log-rolling state in
which the director is perpendicular to the shear plane �not
shown�.

The range of dynamical states manifest in this problem is
clearly evident in the bifurcation diagram of Fig. 4 which
shows a cut in the phase diagram at fixed �̇=4.0, varying 	k.
Such a cut intersects KT, T, W, KW, C, and A states in the

phase diagram. For specificity we show the quantities nz and
the Poincare section of s1. It is clearly evident from Fig. 4
that nz=0 for the T, W, and A states, while the KT, KW, and
C states are out-of-plane states with nz�0. Further, the s1
section, shows a fixed point for the aligned state, regular
cycles for the KT, T, W, and KW states, and irregular �cha-
otic� behavior for the C state.

Finally, we investigate the behavior of this dynamical sys-
tem to a class of periodic perturbations constructed by taking
�̇= �̇0+ �̇1 sin�at�, with t taken in discrete time and a rep-
resenting the angular frequency of the applied forcing. This
corresponds to the experimental situation in which the steady
shear is modulated by a small ��̇1�1� amplitude periodic
perturbation. If �̇0 were strictly zero, this would be the case
of purely oscillatory shear. We choose a to be small, so that
steady state is easily achieved. We have also investigated the
effects of periodic variation of 	k, finding behavior similar to
that described below.

Our results are summarized in Fig. 5 which show the
power spectrum of s1 , log10��A�f��2�against frequency f on a
semilogarithmic plot. Data for the states labeled �a� T and �b�
C in the phase diagram of Fig. 1 are shown. For comparison,
we show the unperturbed power spectrum in the lower panel
of each figure. Note that the introduction of the time modu-
lation adds an additional periodic component to the signal in
the case of the periodic states, such as the T state. The power
spectrum shows several harmonics of the intrinsic and driv-

FIG. 4. �Color online� Bifurcation diagram obtained for a ge-
neric initial condition by varying 	k at fixed �̇=4.0, showing �a� nz

and �b� a Poincare section of s1 �with s2 fixed at the midpoint of the
s2 range� at each point in the bifurcation diagram.
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FIG. 5. �Color online� The two upper panels �a��ii� and �b��ii�
show the power spectrum of s1 against frequency f on a semiloga-
rithmic plot for states corresponding to a representative point in the
regimes labeled �a� T and �b� C �complex or chaotic� in the phase
diagram of Fig. 1. We choose �̇ to vary periodically with frequency
a, and take �̇1=0.1. The lower panel, labeled �a��i� and �b��i�, in
both cases shows the unperturbed power spectrum. The frequency
peaks indicated in �a��i�, the system without periodic forcing, are
indexed as follows: 1=0.729 �the fundamental frequency�, 2
=1.456 �2 times the fundamental frequency�, and 3=2.174 �3 times
the fundamental frequency�. The fundamental frequency of the ap-
plied signal is shown as 4=0.184. The primed peaks indicated in
�a��ii� are combinations of the intrinsic frequency and the frequency
of the applied signal and indexed as follows: 1�=1−4�, 2�=2−4�,
1�=1+4�. Note that the broad-band structure of the power spectrum
in �b��i� remains intact when the forcing is applied.
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ing frequencies as well as linear combinations of these fre-
quencies, consistent with the inherent nonlinearity of this
system. The peaks in the power spectrum are indexed as
shown in the figure. For the state labeled �C� �complex or
chaotic�, the power spectrum shows broad-band structure as
before, indicating that the periodic driving does not serve to
stabilize order. These statements remain roughly independent
of the amplitude of the periodic perturbation, provided it is
not large enough that nearby states in the phase diagram are
accessed. The generic features described above continue to
hold in the other regions of the phase diagram.

Aradian and Cates have recently studied a minimal model
for rheochaos in shear-thickening fluids, using equations
which describe a shear-banding system coupled to a retarded
stress response �29�. These authors connect their model sys-
tem to a modified Fitzhugh-Nagumo model, a dynamical sys-
tem with a variety of interesting and complex phases. Field-
ing and Olmsted studied instabilities in shear-thinning fluids,
where the instability originates in the multibranched charac-
ter of the constitutive relation �30�. Chakrabarty et al. re-
ported a study of the PDEs describing the dynamics of Q,
characterizing spatiotemporal routes to chaotic behavior in
sheared nematics �22�. All of these studies allow for spatial
variation—although restricted so far to the one-dimensional
case—whereas our local map describes the spatially uniform

situation. However, the dynamical system we study is ob-
tained directly from the underlying dynamics, in contrast to
the approaches of Refs. �29,30�. Whether coupling maps of
the sort we construct permits a complete description of the
spatiotemporal structure obtained in Ref. �22� remains to be
seen.

In conclusion, we have proposed a local map describing
the variety of dynamical states obtained in a model for
sheared nematics. Our phase diagram, Fig. 1, contains all
nontrivial dynamical states obtained in previous work. It also
closely resembles, even quantitatively, phase diagrams ob-
tained in previous work which used ordinary differential
equations formulated in continuous time. We have also stud-
ied the behavior of the map under parametric oscillations of
the shear rate, a physical situation not addressed earlier. Our
work thus supplies a crucial ingredient in the construction of
coupled map lattice approaches to the spatiotemporal aspects
of rheological chaos, a problem currently at the boundaries
of our understanding of the dynamics of complex fluids.
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