International Journal of Bifurcation and Chaos, Vol. 18, No. 5 (2008) 1551-1559

(© World Scientific Publishing Company

EXPLOITING NONLINEAR DYNAMICS TO
STORE AND PROCESS INFORMATION

ABRAHAM MILIOTIS*, SUDESHNA SINHAT*
and WILLIAM L. DITTO**
*J. Crayton Pruitt Family Department of Biomedical Engineering,
University of Florida, Gainesville, FL 32611-6131, USA

"The Institute of Mathematical Sciences,
Taramani, Chennai 600 113, India

YChaoLogiz, Inc., 101 SE 2nd Place, Suite 201-B,
Gainesville, FL 32601, USA

Received May 29, 2007; Revised June 25, 2007

By applying nonlinear dynamics to the dense storage of information, we demonstrate how a
single nonlinear dynamical element can store M items, where M is variable and can be large.
This provides the capability for naturally storing data in different bases or in different alphabets
and can be used to implement multilevel logic. Further we show how this method of storing
information can serve as a preprocessing tool for (exact or inexact) pattern matching searches.
Since our scheme involves just a single procedural step, it is naturally set up for parallel imple-
mentation and can be realized with hardware currently employed for chaos-based computing

architectures.

Keywords: Chaos computing; data storage; information processing; encoding; search; threshold

control.

1.

Information encoding, storage, and retrieval are
fundamental functions of computing devices. Today
most commonly used devices for storing and pro-
cessing information are based on the binary encod-
ing of information, i.e. upon bits. Larger chunks of
information are encoded by combining consecutive
bits into bytes and words. In this work we develop
a different approach for information encoding and
storage based on the wide variety of patterns that
can be extracted from nonlinear dynamical systems.

Recent research has demonstrated that the
richness of the patterns embedded in nonlinear
dynamical systems can be utilized to perform com-
putations [Munakata et al., 2002; Sinha & Ditto,
1998, 1999; Prusha & Lindner, 1999; Sinha et al.,
2002a, 2002b; Murali et al., 2003a, 2003b]. Here we

Introduction

1551

demonstrate the use of arrays of nonlinear dynam-
ical systems (or elements) to stably encode and
store information (such as patterns and strings).
Furthermore we will demonstrate how this storage
method also enables the efficient and rapid search
for specified items of information in the data store.
The nonlinear dynamics of the array elements pro-
vides flexible-capacity storage, as well as a means
to preprocess data for exact and inexact pattern
matching. In particular, we choose chaotic systems
to store and process data through the natural evo-
lution of their dynamics. The abundance of distinct
dynamical behaviors (i.e. the fact that a chaotic sys-
tem incorporates an infinite number of unstable pat-
terns) gives it the ability to represent a large set of
items. One can process data stored in such systems
by controlling the system to restrict it to a single

1552 A. Miliotis et al.

one of those fixed points. In the following we give
specific details of the scheme and then demonstrate
it with examples.

2. Encoding and Storing Information

Consider a list of N data elements (labeled as
j =1,2,...,N), where each element is comprised
of one of M distinct items. N can be arbitrarily
large and M is determined by the kind of data being
stored. For instance when storing English text one
can consider the letters of the alphabet to be the
naturally distinct items with M = 26. For the case
of data stored in decimal representation M = 10,
and for work in bioinformatics (manipulating the
symbols A, T, C, and G) one has M = 4. One can
also consider strings and patterns as the items. For
instance for manipulating English text one might
use a large set of keywords as the basis, necessitat-
ing very large M.

We store this list of N elements by N dynami-
cally evolving chaotic elements. The state of the ele-
ments at discrete time n is given by X7"[n], where
j (7 =1,2,...,N) indexes each element of our list
and m (m = 1,2,..., M) indexes an item in our
“alphabet” (namely one of the M distinct items).
To reliably store information one must confine each
dynamical system to a fixed point behavior, i.e. a
state that is stable and constant throughout the
dynamical evolution of the system over time n.

To flexibly control the dynamical elements onto
a large set of period 1 fixed points, we employ a
threshold mechanism. This is given by the follow-
ing simple strategy: whenever the value of a state
variable of a dynamical system X exceeds a thresh-
old value T (i.e. when X > T), X is reset to T,
or clipped down to 7. The threshold mechanism
allows us to exploit the richness of chaos in a direct
and efficient way, by creating new stable points of
different periodicities from the chaotic dynamics.
It achieves this by changing the shape and struc-
ture of the chaotic attractor by implementing a
“wall” or a “limiter” in phase space. The position
of the limiter depends on the threshold value, and
can be varied. Different threshold values allow the
chaotic time sequence to be “clipped” to different
controlled sequences, with different periodicities. So
one can create a wide range of stable regular behav-
iors from the chaotic dynamics (and not merely sta-
bilize the natural unstable periodic points of the
system) [Sinha, 1994; Glass & Zeng, 1994; Sinha,
2001; Wagner & Stoop, 2001].

Typically a large continuous window of thresh-
old values (Tiin < T' < Tax) can be found where
the system is confined to period 1 fixed points,
namely, the state of the chaotic element under
thresholding is stable at T' (i.e. X[n| = T, for all
times n) if T is in [Tiin, Tmax). Thus the system
is capable of yielding a continuous range of fixed
points X[n] = T, as one varies the threshold over
the interval. Note again, that this is quite unlike
what can be achieved by stabilizing the (typically)
discrete set of unstable period 1 points of a nonlin-
ear system.

Now for encoding we will use the range of
threshold values that yield period 1 fixed points.
Specifically, we can take a large set of thresholds
{TY,T2,...,TM} from the fixed point range, set-
ting up a one-to-one correspondence of these M
thresholds with the M distinct items of our data.
This allows each item m to be uniquely encoded by
a specific threshold T (m = 1,2,... M). That is, if
element j holds item m in the database, the thresh-
old value of element j is set to T"". So the number of
distinct items that can be stored in a single dynam-
ical element is typically large, as the size of M is
limited only by the precision and resolution of the
threshold setting and the noise characteristics of the
physical system being employed.

So, denoting the threshold of element j by 77"
we have the following: if element j of the system,
X7[n], exceeds its prescribed threshold T7" (i.e.
when X7"[n] > T]") the variable X7"[n] is reset to
T7". Since the thresholds lie in the range yielding
fixed points, this will enable the element to hold its
state at value X7"[n] = T]" for all times n.

In particular, consider a collection of storage
elements that evolve in discrete time n according to
the tent map,

f(X7[n]) = 2min(X7"[n], 1 = X[n]) (1)

with each dynamical element storing one element of
the given list of items (j = 1,... N). Each element
can hold any one of the M distinct items indicated
by the index m (m = 1,2,...,M). As described
above, a threshold will be applied to each dynam-
ical element to confine it to the fixed point corre-
sponding to the item to be stored. For the tent map,
thresholds in the range from 0 to 2/3 yield fixed
points, namely X]m[n] = T, for all time, when
threshold 0 < 77" < 2/3.

See Fig. 1 for a schematic of the tent map
under the threshold mechanism, which is effectively
described by a “be-headed map”. It is clear from

Exploiting Nonlinear Dynamics to Store and Process Information 1553

1 \ \

[Xn+1 = Xn]
0.8 — -
0.6 — -
i i
e L Threshold = 0.5 |
0.4 —
0.2 — Threshold = 0.25 —

O | ‘ | | ‘ | 1 ‘ 1 1 ‘ 1
0 0.2 0.4 0.6 0.8 1

X]']

Fig. 1. The Tent Map under the threshold mechanism effec-

tively yields a map with a “plateau” at the threshold value.
Here threshold values 0.25 and 0.5 are explicitly shown. The
diagonal line is the X, 11 = Xy line.

Fig. 1 that in the range 0 to 2/3 the value of
X[n + 1] lies above X[n] implying that the system
with state X [n] at threshold T' will be mapped to
a state higher than 7" in the subsequent iterate and
thus will be clipped back to 7. Another way of
graphically rationalizing this is to note that fixed
point solutions are obtained where the X[n + 1] =
X|[n] line intersects the “beheaded” tent map. The
value of X at the intersection yields the value of the
fixed point, and the slope at the intersection natu-
rally gives the stability of the fixed point. It is clear
from Fig. 1 that in the range 0 to 2/3 this inter-
section is on the “plateau”, namely the fixed point
solution is equal to the threshold value. Further the
solution of the fixed point for this map is super-
stable as the slope is exactly zero on the “plateau”.
This makes the thresholded state very robust and
quite insensitive to noise.

In our encoding, the thresholds are chosen
from the interval (0,1/2), namely a subset of the
fixed point window (0, 2/3). For specific illustration,
without loss of generality consider each item to be
represented by an integer m, in the range [1, M].
Defining a resolution r between each integer as:

1 1

"oy 2)
gives a lookup table mapping the encoded number
to the threshold, relating the integers m in the range

[1, M] to the thresholds 7" [j] in the range [r,1/2 —
7| by:

" =m-r (3)

Therefore we obtain a direct correspondence
between the set of integers 1 to M, where each
integer represents an item, and a set of M thresh-
old values. This correspondence or representation is
important for the process of encoding information
in an M-level representation and, as we shall see
below, it is primarily important for the process of
searching the list for certain bits of information. So
we can store the N list elements by setting appro-
priate thresholds [via Eq. (3)] on N dynamical ele-
ments. As mentioned before, the thresholded states
encoding different items are very robust to noise
since they are superstable fixed points.

3. Searching for Information

Once we have a given list stored by setting appro-
priate thresholds on N dynamical elements, we can
query for the existence of a specific item in the list.
Here we show how the manner in which the infor-
mation is encoded helps us preprocess the data such
that the effort required in the pattern matching
searches is reduced. Specifically we will demonstrate
how we can use one global operational step to map
the state of elements with the matching item to an
unique maximal state that can be easily detected.
Note that such an operation enables us to detect
matches to strings/patterns (of length equivalent
to logs M binary bits) in one step. It would take
typically log, M steps to do the same for the case
of binary encoded data.

When searching for a specific item in the list,
one globally shifts the state of all elements of the
list up by the amount that represents the queried
item. Specifically the state X"[n] of all the elements
(j =1,...,N) is raised to X[j] + QF, where QF is
a search key given by:

1

Q" =3

5 - T (@)

where k is the number being searched for. This addi-
tion shifts the interval that the list elements can
span, from [r, 1/2 — 7] to [r + QF, 1/2 — r + Q¥],
where QF is the globally applied shift. See Fig. 2 for
a schematic of this process.

Notice that what we are searching for is the
representation of the item, not the item itself. For
example, we can encode each letter of the alphabet

1554 A. Miliotis et al.

|- 7“1
I:l - Dynamical system
g T2
- List element
o |
» T/
n TN
Fig. 2. Schematic of the list held in an array of nonlin-

ear dynamical system elements and the parallelized search
operation.

by a number, such that the lowest threshold T[]
represents the letter A, the next highest T2[j] rep-
resents B, etc. When we search for A, we are really
searching for the state with threshold 7[j].

Notice that the information or item being
searched for is encoded in a manner “complimen-
tary” to the encoding of the items in the list (much
like a key that fits a particular lock); i.e. Q% + T*
adds up to 1/2. This guarantees that only the ele-
ment matching the item being searched for will have
its state shifted to 1/2. The value of 1/2 is special
in that it is the only state value that on the subse-
quent update will reach the value of 1.0, which is the
maximum state value for this system. So only the
elements holding an item matching the queried item
will reach the extremal value 1.0 on the dynami-
cal update following a search query. Note that the
important feature here is the nonlinear dynamics
mapping the state 1/2 to 1, while all other states
(both higher and lower than 1/2) get mapped to
values lower than 1. See Fig. 3 for a schematic of
this process.

The salient characteristic of the point 1/2 is the
fact that it is the unique critical point, and so it acts
as “pivot” point for the nonlinear dynamical folding
that will occur on the interval [r+QF, 1/2 — 7+ QF]
during the next update. This provides us with a
single global monitoring operation to push the state
of all the elements matching the queried item to the
unique maximal point in parallel.

The crucial ingredient is the use of the exist-
ing critical point in the dynamical mapping to

implement selection. Chaos is not strictly necessary
here. It is evident that for unimodal maps higher
nonlinearities allow larger operational ranges for the
search operation and also enhance the resolution of
the encoding. For the tent map specifically, it can be
shown that the minimal nonlinearity necessary for
the above search operation to work is operation in
the chaotic region. Another specific feature of the
tent map is that its piecewise linearity allows the
encoding and search operation to be very simple
indeed.

Of course to complete the search we must now
detect the maximal state located at 1. This can be
accomplished in a variety of ways. For example, one
can simply employ a level detector to register all
elements at the maximal state. This will directly
give the total number of matches, if any. So the total
search process is rendered simpler as the state with
the matching pattern is selected out and mapped to
the maximal value, allowing easy detection.

Further, by relaxing the detection level by a pre-
scribed “tolerance”, we can check for the existence
within our list of numbers or patterns that are close
to the number or pattern being searched for. In this
case “close to” means “having a representation that
is close to the representation of the item for which we
are searching. Using the earlier example of English
letters of the alphabet encoded using the lowest
threshold T[j] for A, the next higher threshold for
B, etc., relaxing the detection threshold a bit allows
us to find mistyped words where L or N were substi-
tuted for M or where X or Z were substituted for Y.
However, if we had chosen our representation such
that the ordering put T and U before and after Y (as
is the case on a standard QWERTY keyboard), then
our relaxed search would find spellings of bot or bou
when boy was intended. Thus “nearness” is defined
by the choice of the representation and can be cho-
sen advantageously depending on the intended use.
Figure 6 gives an illustrative example of detecting
such inexact matches.

So mnonlinear dynamics works as a powerful
“preprocessing” tool, reducing the determination
of matching patterns to the detection of maxi-
mal states, an operation that can conceivably be
accomplished by simple addition and in parallel.
For instance, content-addressable memory (CAM)
is a special type of computer memory used in cer-
tain very high speed searching applications, such as
routers. Unlike standard computer memory (ran-
dom access memory or RAM) in which the user
supplies a memory address and the RAM returns

Exploiting Nonlinear Dynamics to Store and Process Information 1555

1\\\

0.8 — —

0.6 — —

Xn+1
T
|

0.4 — —

0.2 — —

0 0.2

1\\\

0.8 — —

0.6 — —

Xn+1
T
|

0.4 — —

0.2 — —

O\\\‘\\\‘\

0 02 04
X

Fig. 3.

1\\\‘\\\

0.8 — —

Xn+1

0.8 — —

0.6 — —

Xn+1
T
|

0.4 — —

0.2 — —

0.4 0.6
X

n

O Ll
0 0.2

Schematic representation of the state of an element: (i) matching a queried item, (ii) higher than the queried item,

(iii) lower than the queried item. The top left panel shows the state of the system encoding a list element. Three distinct
elements are depicted. The state of the first element is held at 0.1 (cyan); the second element is held at 0.25 (green) and the
third element is held at 0.4 (blue). These are shown as lines of proportional lengths on the z-axis. The top right, bottom right
and bottom left panels show each of these elements with the search key added to their states. Here the queried for item is
encoded by 0.25. So Qk =1/2-0.25 = 0.25. This amount is shown in red. After the addition of the search key, the subsequent
dynamical update yields the maximal state 1 only for the element holding 0.25 (green). The ones with states higher and lower
than the matching state (namely 0.1 and 0.4, shown in cyan and blue) are mapped to lower values.

the data word stored at that address, a CAM is
designed such that the user supplies a data word
and the CAM searches its entire memory to see if
that data word is stored anywhere in it [Krikelis,
1997]. What we attempt to design here is a CAM-
like device.

4. Encoding, Storing and Searching:
An Example

Consider the case where our data is English lan-
guage text, encoded as described above by an array

of tent maps. In this case the distinct items are
the letters of the English alphabet. As a result
M = 26 and we obtain r = 0.0185185... from
Eq. (2), and the appropriate threshold level for
each item is obtained from Eq. (3). More specifi-
cally, consider as our list the letters in the title of
the Beatles song “all you need is love”. Each let-
ter in this phrase is an element of the list with
a value selected from our 26 possible values and
can be encoded using the appropriate threshold, as
in Fig. 4(a).

1556 A. Miliotis et al.

T T T T T T T T T T T T T T T T T 17T 14\\\\|\\|\||\||\||\|_ 1\\I\||\||\|\\\\\\|\|
1, 4
0.9r 4 0.9kt
0.9r .
0.8r . 0.8
0.8 1
0.7r . 0.7
o 07F 1 - -
s 2 £
35 S 0.6F 1 506
o= 06 1 L c =]
£ 5 & o
5 =
£ 8 S8 05/ 5805
& - 05F 7 © © <
20 - e O
58 gM04 gg04
%(ﬂol E . E(ﬂ
] [45] [45]
0.3 03 ‘ 03
02 0.2 ‘ 0.2
0.1 0.1 ‘ 0.1
. 0 - 0 :
all you need is love all you need is love all you need is love
Letter Letter Letter

(a) (b) (c)

Fig. 4. (a) Threshold levels encoding the sentence “all you need is love”, (b) the search key value for letter “d” is added to all
elements, (c) the elements update to the next time step. For clarity, we marked by red any elements that reach the detection
level.

LIS N S S S N O B B O B S B B B B N B 14|\||\|\||\|\||\|\|;_ ‘I\I\l\l\l\\\\\\\\
1L 4
0.9r B
0.9r A
0.8r R 0.8
0.8r A
0.7 8 0.7
o 07r b C .
o [} @
u— = =
35 S 0.6F . ®506
w &= 0.6+ E 8c Jof=1
£ 5 & o
5 =
£5 §3 05 . 5505
o - 05 7 @ =
o0 u—a w O
G ® o x © g
230_4 % 0.4r 8 %%0.4
] — —
] (5] (5]
0.3 03r 0.3
0.2 0.2
0.1 0.1
. 0 - 0 ,
all you need is love all you need is love all you need is
Letter Letter Letter

(a) (b) (c)

Fig. 5. (a) Threshold levels encoding the sentence “all you need is love”, (b) the search key value for letter “o” is added to all
elements, (c) the elements update to the next time step. For clarity, we marked by red any elements that reach the detection
level.

Exploiting Nonlinear Dynamics to Store and Process Information 1557

1i\|\\|\\ll\\\\l\\llL 1i\\||\||\\l\\l\ll\\L 1\\!\\!\\!!\\\\!\\!!\ 1i\\||\||\\l\\l\ll\\L

0.9r q 0.9F 4 0.9 09

0.8+ B 0.8f A 0.8 0.8

0.7- . 0.7 8 0.7 0.7
o . - -
g £ £ £
8506 1 S 506 ® 506
2% £s ED £
o = [0} [}
£ 505 1 53 5505 5505
2 © ® < ° <
O — w O — O
5 ® o 2 g O o
o 804 g £ 304 £304
[u] + + +
& 1) 5] 1)

0.3- 0.3 0.3

0.2 0.2 0.2

0.1 0.1 0.1

0 . 0 : 0 . 0 .
all you need is love all you need is love all you need is love all you need is love
Letter Letter Letter Letter
(a) (b) (c) (d)

Fig. 6. (a) Threshold levels encoding the sentence “all you need is love”, (b) the search key value for letter “m” is added to

all elements, (c) the elements update to the next time step. It is clear that no elements reach the detection level at 1. (d) By

[75Ne]

lowering the detection level we can detect whether items “adjacent” to “m” are present.

Now the list, as encoded above, can be searched
for specific items. Figure 4 presents the example of
searching for the letter “d”. To do so the search key
value corresponding to letter “d” [Eq. 4] is added
globally to the state of all elements. Then through
their natural evolution, at the next time step the
state of the element(s) containing the letter “d” is
maximized. In Fig. 5 we performed an analogous
query for the letter “o”, which is present twice in
our list, to show that multiple occurrences of the
same item can be detected. Finally in Fig. 6 we
search for an item that is not part of our given
list, the letter “m”. As expected Fig. 6(c) shows
that none of the elements are maximized. By low-
ering the detection level to the value 1 — (2 - r), we
have detected whether adjacent items to the queried
one are present. Specifically we have detected that
the letters “1” and “n” are contained in the list.
This demonstrates that inexact matches can also
be found by this scheme.

5. Discussion

A significant feature of this search scheme is that it
employs a single simple global shift operation and
does not entail accessing each item separately at any

stage. It also uses a nonlinear folding to select out
the matched item, and this nonlinear operation is
the result of the natural dynamical evolution of the
elements. So the search effort is considerably sim-
plified because it uses the native responses of the
nonlinear dynamical elements. One can then think
of this as a natural application, at the machine level,
in a computing machine consisting of chaotic mod-
ules [Munakata et al., 2002; Sinha & Ditto, 1998,
1999; Prusha & Lindner, 1999; Sinha et al., 2002a,
2002b; Murali et al., 2003a, 2003b; Corron et al.,
2000; Hunt, 1991; Myneni et al., 1999; Murali &
Sinha, 2003; Chlouverakis & Adams, 2005]. It is
also equally potent as a special-applications “search
chip”, which can be added on to regular circuitry
and should prove especially useful in machines,
which are repeatedly employed for selection/search
operations.

In terms of the processor timescale, the search
operation requires one dynamical step, namely one
unit of the processor’s intrinsic update time. The
principal point here is the scope for parallelism that
exists in our scheme. This is due to the selection
process occurring through one global shift, which
implies that there is no scale-up (in principle) with
size N. Additionally conventional search algorithms

1558 A. Miliotis et al.

work with ordered lists, and the time required for
ordering generically scales with N as O (N log N).
Here in contrast, there is no need for ordering, and
this further reduces the search time.

Regarding information storage capacity, note
that we employ an M-state encoding, where M can
be very large in principle. This offers much gain in
encoding capacity. As in the example we present
above, the letters of the alphabet are encoded by
one element each; binary coding would require much
more hardware to do the same.

Specifically, consider the illustrative example of
encoding a list of names, and then searching the
list for the existence of a certain name. In the cur-
rent ASCII encoding technique, each ASCII letter
is encoded into two hexadecimal numbers or 8 bits.
Assuming a maximum name length of k letters, this
implies that one has to use 8 % k£ binary bits per
name. So typically the search operation scales as
O (8kN).

Consider in comparison what our scheme offers:
if base 26 (“alphabetical” representation) is used,
each letter is encoded into one dynamical system
(an “alphabit”). As mentioned before, the system
is capable of this dense encoding as it can be con-
trolled on to 26 distinct fixed points, each corre-
sponding to a letter. Again assuming a maximum
length of k letters per name, one needs to use k
“alphabits” per name. So the search effort scales as
kN. Namely, the storage is 8 times more efficient
and the search can be done roughly 8 times faster
as well!

If base S encoding is employed, where S is the
set of all possible names (size(S) < N), then each
name is encoded into one dynamical system with S
fixed points (a “superbit”). So one needs to use just
1 “superbit” per name, implying that the search
effort scales simply as N, i.e. 8k times faster than
the binary encoded case.

In practice the final step of detecting the max-
imal values can conceivably be performed in paral-
lel. This would reduce the search effort to two time
steps (one to map the matching item to the maximal
value and another step to detect the maximal value
simultaneously). In that case the search effort would
be 8kN times faster than the binary benchmark.

Alternate ideas to implement the increasingly
important problem of search have included the
use of quantum computers [Grover, 1997]. How-
ever, our nonlinear dynamical scheme has the dis-
tinct advantage that the enabling technology for
practical implementation need not be very different

from conventional silicon devices. Namely, the phys-
ical design of a dynamical search chip should be
realizable through conventional CMOS circuitry.
Implemented at the machine level, this scheme
can perform unsorted searches efficiently. Primi-
tive CMOS circuit realizations of chaotic systems,
like the tent map, already operate in the region of
1 MHz. Thus a complete search for an item com-
prising of search key addition, update, threshold
detection, and list restoration can be performed at
250 kHz, regardless of the length of the list. Com-
mercial efforts are underway to construct VLSI cir-
cuitry in GHz ranges and are showing promising
results in terms of power, size and speed.

Finally, regarding the general outreach of the
scheme: nonlinear systems are abundant in nature,
and so embodiments of this concept can be con-
ceived in many different physical systems ranging
from fluids to electronics to optics. Potentially good
candidates for physical realization of the scheme
include nonlinear electronic circuits and optical
devices [Garcia-Ojalvo & Roy, 2001]. Also systems
such as single electron tunneling junctions [Yang
& Chua, 2000], which are naturally piecewise lin-
ear maps, can conceivably be employed to make
such search devices. All of this underscores the gen-
eral scope of the concept. In particular, we have
implemented this idea with a model of a resistively
shunted Josephson junctions with current bias and
RF drive (details follow in a future publication
[Ditto & Sinha, 2008]). So the very general idea of
using a nonlinear function for selection of a partic-
ular (desired) state can find embodiment in many
different physical contexts.

In summary we have presented a method using
nonlinear dynamical elements to store information
efficiently and flexibly. We demonstrate how a single
element can store M items, where M can be large
and can vary to best suit the nature of the data
being stored and the application at hand. Namely,
we obtain information storage elements of flexible
capacity, capable of naturally storing data in dif-
ferent bases or in different alphabets or with mul-
tilevel logic. This cuts down space requirements by
logy M vis-a-vis elements storing via binary bits.
Further we have shown how this method of storing
information can be naturally exploited for search-
ing of information. In particular, we demonstrate
a scheme to determine the existence of an item
in the unsorted list. The scheme involves a sin-
gle global shift operation applied simultaneously
to all the elements comprising the list and this

Exploiting Nonlinear Dynamics to Store and Process Information 1559

operation, after one dynamical step, pushes the ele-
ment(s) storing the matching item (and only those)
to a unique, maximal state. This extremal state
can then be detected by a simple level detector,
directly giving the number of matches. Nonlinear
dynamics is exploited as a powerful “preprocess-
ing” tool, reducing the determination of matching
patterns to the detection of maximal states. The
scheme can also be extended to identify inexact
matches. Since the method involves just one paral-
lel procedural step it is naturally set-up for parallel
implementation on existing and future implemen-
tations of chaos-based computing hardware rang-
ing from conventional CMOS-based VLSI circuitry
to more esoteric chaotic computing platforms such
as magneto-based circuitry [Koch, 2005] and high
speed chaotic photonic integrated circuits operat-
ing in the GHz frequency range [Yousefi et al.,
2007].

Acknowledgments

We acknowledge the support of the Office of Naval
Research [N000140211019] and of ChaoLogix, Inc.

References

Chlouverakis, K. E. & Adams, M. J. [2005] “Optoelec-
tronic realization of NOR logic gate using chaotic two-
section lasers,” FElectron. Lett. 41, 359-360.

Corron, N. J., Pethel, S. D. & Hopper, B. A. [2000] “Con-
trolling chaos with simple limiters,” Phys. Rev. Lett.
84, 3835-3838.

Garcia-Ojalvo, J. & Roy, R. [2001] “Parallel communica-
tion with optical spatiotemporal chaos,” IEEE Trans.
Circuits Syst.-1 48, 1491-1497.

Glass, L. & Zeng, W. [1994] “Bifurcations in flat-topped
maps and the control of cardiac chaos,” Int. J. Bifur-
cation and Chaos 4, 1061-1067.

Grover, L. [1997] “Quantum mechanics helps in search-
ing for a needle in a haystack,” Phys. Rev. Lett. 79,
325-328.

Hunt, E. [1991] “Stabilizing high-period orbits in a
chaotic system — the diode resonator,” Phys. Rev.
Lett. 67, 1953-1955.

Koch, R. [2005] “Morphware,” Sci. Amer. 293, 56-63.

Krikelis, A. & Weems, C. C. (eds.) [1997] Associative
Processing and Processors (IEEE Computer Science
Press).

Munakata, T, Sinha, S. & Ditto, W. L. [2002] “Chaos
computing: Implementation of fundamental logical
gates by chaotic elements,” IEEE Trans. Circuits
Syst.-1 49, 1629-1633.

Murali, K. & Sinha, S. [2003] “Experimental realization
of chaos control by thresholding,” Phys. Rev. E 68,
016210.

Murali, K., Sinha, S. & Ditto, W. L. [2003a] “Implemen-
tation of NOR gate by a chaotic Chua’s circuit,” Int.
J. Bifurcation and Chaos 13, 2669-2672.

Murali, K., Sinha, S. & Ditto, W. L. [2003b] “Realization
of the fundamental NOR gate using a chaotic circuit,”
Phys. Rev. E 68, 016205.

Myneni, K., Barr, T. A., Corron, N. J. & Pethel, S. D.
[1999] “New method for the control of fast chaotic
oscillations,” Phys. Rev. E 83, 2175-2178.

Prusha, B. S. & Lindner, J. F. [1999] “Nonlinearity
and computation: Implementing logic as a nonlinear
dynamical system,” Phys. Lett. A 263, 105-111.

Sinha, S. [1994] “Unidirectional adaptive dynamics,”
Phys. Rev. E 49, 4832-4842.

Sinha, S. & Ditto, W. L. [1998] “Dynamics based com-
putation,” Phys. Rev. Lett. 81, 2156-2159.

Sinha, S. & Ditto, W. L. [1999] “Computing with dis-
tributed chaos,” Phys. Rev. E 81, 2156-2159.

Sinha, S. [2001] “Using thresholding at varying intervals
to obtain different temporal patterns,” Phys. Rev. E
63, 036212.

Sinha, S., Munakata, T. & Ditto, W. L. [2002a] “Parallel
computing with extended dynamical systems,” Phys.
Rev. E 65, 036214.

Sinha, S., Munakata, T. & Ditto, W. L. [2002b] “Flexible
parallel implementation of logic gates using chaotic
elements,” Phys. Rev. E 65, 036216.

Sinha, S. & Ditto, W. L. [2008] to be published.

Wagner, C. & Stoop, R. [2001] “Optimized chaos control
with simple limiters,” Phys. Rev. E 63, 036212.

Yang, T. & Chua, L. O. [2000] “Nonlinear dynamics
of driven single-electron tunneling junctions,” Int. J.
Bifurcation and Chaos 10, 1091-1113.

Yousefi, M., Barbarin, Y., Beri, S., Bente, E. A. J. M.,
Smit, M. K., Notzel, R. & Lenstra, D. [2007] “New
role for nonlinear dynamics and chaos in integrated
semiconductor laser technology,” Phys. Rev. Lett. 98,
044101.

