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PACS 05.45.-a – Nonlinear dynamics and chaos

Abstract – We demonstrate how the collective response of N globally coupled bistable elements
can strongly reflect the presence of very few non-identical elements in a large network of otherwise
identical elements. Counter-intuitively, when there are a small number of elements with natural
stable state different from the bulk of the elements, all the elements of the system evolve to the
stable state of the minority due to strong coupling. The critical fraction of distinct elements needed
to produce this swing shows a sharp transition with increasing N , scaling as 1/

√
N . Furthermore,

one can find a global bias that allows robust one-bit sensitivity to heterogeneity. Importantly, the
time needed to reach the attracting state does not increase with the system size. We indicate the
relevance of this ultra-sensitive generic phenomenon for massively parallelized applications, such
as the determination of the existence of a “needle in a haystack” by one measurement.

Copyright c© EPLA, 2012

The complex interactive systems modelling spatially
extended physical, chemical and biological phenomena,
has commanded intense research effort in recent years.
One of the important issues in such systems is the effect
of heterogeneity on spatiotemporal patterns. The role
of disorder, such as static or quenched inhomogeneities,
and the effect of coherent driving forces, has yielded a
host of interesting, often counter-intuitive, behaviours. For
instance, stochastic resonance [1] in coupled arrays [2],
diversity-induced resonant collective behaviour in ensem-
bles of coupled bistable or excitable systems [3] demon-
strated how the response to a sub-threshold input signal
is optimized. However, the potential of coupled systems
for parallel information processing remains largely unex-
plored. It is our aim to show the existence of an ultra-
sensitive regime of N -coupled bistable elements whereby
small heterogeneity in the system strongly influences its
global dynamics.
Here we consider N -coupled nonlinear systems, where

the evolution of the element i (i= 1, . . . , N) is given by

ẋi = F (xi)+ ai+C(〈x〉−xi)+ b, (1)
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where C is the coupling strength, b is a small global bias,
and the mean field 〈x〉 [4] is given by

〈x〉= 1
N

∑

i=1,N

xi. (2)

The function F (x) is nonlinear and yields a bistable
potential. Specifically, we consider F (x) = xi−x3i , which
gives rise to a double-well potential, with one well centered
at x∗− =−1 (lower well) and another at x∗+ =+1 (upper
well).
We consider a situation where ai can take either of two

sufficiently different values, A0 and A1. With no loss of
generality, we set A0 = 0 and A1 = 1, i.e. ai of the elements
i= 1, . . . , N , can be 0 or 1. The initial conditions on N
elements here are taken to be randomly distributed about
zero mean, and in our simulations a very large number of
initial states (∼ 104) are sampled in different trial runs. In
order to quantify what fraction of elements have ai = 0, we
use the following notation: N0 is the number of elements
with ai = 0, and N1 =N −N0 is the number of elements
with ai = 1. The principal question is how sensitive to
small inhomogeneity collective dynamical features are,
such as the ensemble average 〈x〉, which can be considered
as the output of the system (see fig. 1(a)).
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Fig. 1: (Colour on-line) (a) Schematics of coupled nonlinear
system with N inputs, output, bias, and reset for initial
conditions. (b) Time evolution of an array of 100 strongly
coupled (C = 1) bistable elements having all ai = 0 in eq. (1),
and (c) having 10 elements with ai = 1 (denoted by arrows)
and 90 elements with ai = 0.

The values A0, A1 and bias b are such that in an
uncoupled system, when ai =A0, the system goes rapidly
to the lower well x∗− ∼−1, while the system with ai =A1
is attracted to the upper well x∗+ ∼ 1. When all ai =A0, we
have a homogeneous system, and this uniform system is
naturally attracted to the lower well x∗−. One may wonder,
how many ai need to be different from 0 in order to make
a significant difference in the collective output.
Intuitively, one may expect that the global average will

pick up contributions of order 1/N from each element.
So a fairly large number of elements need to be different
in order to obtain significant deviation in the mean field
and drive a different collective response. Alternately, for
strong coupling, one may think, for small heterogeneity,
the majority of the elements will dictate the nature of the
collective field, as the minority should synchronize with
the majority population.
However, we will show here that both the expectations

above do not hold true. Instead, this system, under
sufficiently strong coupling, will evolve to the stable
state of the minority population. Furthermore, the critical
number of elements distinct from the bulk that is needed
for this effect, is typically less than O(

√
N), and can

actually be made as small as one.
Figure 1(b) shows the evolution of 100 globally coupled

elements, with coupling constant C = 1, to the lower
well from Gaussian random initial conditions, in the
homogeneous case where all ai = 0. In sharp contrast,
fig. 1(c) shows all the elements of the network being
attracted to the upper well, when a few elements have
ai = 1. So it is clearly evident that even when very few
ai’s are different from 0, the entire network is pushed to
the upper well.
So the collective field sensitively reflects very small

deviations from uniformity. In fact, the response to small
diversity is a swing from the lower well to the upper one,
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Fig. 2: (Colour on-line) Time evolution of an array of 100
coupled bistable elements having one ai = 1 in eq. (1) and
the rest 0, with coupling strength C = 0.1 (top) and C = 1
(bottom). Here bias b is −0.0005 in both cases.
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Fig. 3: (Colour on-line) Time evolution of the mean field 〈x〉
of a network of 1000 coupled bistable elements for the cases
of: i) C = 0.1, N1/N = 0.1 (red solid line); ii) C = 1, N1/N = 0
(green dashed line); and iii) C = 1, N1/N = 0.1 (blue dotted
line). Here bias b is −0.05 in all cases.

for all elements in the system. The coupled system then
acts like a sensitive detector, as its response to few ai = 1,
in an otherwise uniform lattice of ai = 0, is very large.
Coupling is crucial in this effect. In a weakly coupled

system, when a few ai are different, the difference in
the mean field of the homogeneous and inhomogeneous
systems will be proportional to N1/N . However, the
response of the strongly coupled system to small N1 is
very large (namely ∼ (x∗+−x∗−)) (see figs. 2, 3).
In order to quantify the sensitivity of the collective

response, we calculate the mimimum N1 needed to flip
the output to the upper well (within a small prescribed
accuracy). We call this the critical population N1c.
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Fig. 4: (Colour on-line) (a) Probability, P , that all the elements
evolve to the upper well, from random initial conditions, as a
function of fraction f =N1/N for different system sizes. Here
bias b=−0.05, coupling constant C = 1, and averaged over
10000 runs. (b) Data collapse of probability P for various N as
obtained by scaling the x-axis by N1/2(f − fc), indicates that
fc is 0.075± 0.001 for this bias. Inset: scaling of f − fc with
respect to N , where f is the fraction at which P ∼ 1; solid line:
1/
√
N fit. (c) P vs. global bias b, for different system sizes,

with f =N1/N = 0.075.

Figure 4 displays the collective response to very small
inhomogeneity under varying system size N and global
bias b. In fig. 4(a), we show the probability, P , that all
the oscillators evolve to the upper well, as a function of
f =N1/N for different system sizes for a bias b=−0.05
and coupling constant C = 1. The figure shows that there
is a critical fraction above which all the oscillators switch
to the upper well. The switching becomes sharper and
sharper as the system size increases. To obtain the critical
population, N1c in the large N limit, we use the finite
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Fig. 5: (Colour on-line) Probability, P , that all the oscilla-
tors evolve to the upper well as a function of global bias, for
a system of 1000 elements: curve (a) with no ai = 1, namely
f =N1/N = 0 and curve (b) with just one element with ai = 1,
namely f =N1/N = 0.001. The red (solid) line shows the deter-
ministic case with all initial x= 0. The black (dashed) curve
shows the evolution from an initial system with states drawn
from a Gaussian distribution, with small standard deviation
(∼ 0.01), centered around zero. Here coupling strength C = 1.

size scaling. For a given bias and coupling constant, the
probability P satisfies the following scaling form:

P ∼G (Nφ(f − fc)
)
, (3)

where fc =N1c/N when N →∞, φ is the critical exponent
and G is the scaling function. A good data collapse, shown
in fig. 4(b), is obtained for φ= 1/2 indicating that

|f − fc| ∼ 1√
N
⇒ |N1−N1c| ∼

√
N. (4)

A similar transition is observed under varying bias b, as
displayed in fig. 4(c).
Clearly then, the minority population can pull the

strongly coupled bistable system to a final state distinct
from the homogeneous case, under suitable bias. Now, one
may wonder if the fundamental one-bit detection limit can
be achieved in our system. In fig. 5, we show how a large
system, N = 1000, responds to only one distinct element
in the array. It demonstrates that there exists a range
of global bias which allows the system to yield P = 0 for
N1 = 0 and P = 1 when N1 = 1. So by tuning the global
bias we can obtain a system where a single ai = 1 can draw
the whole system to the upper well.
Specifically then, in the representative example

displayed in fig. 6, in a lattice of 100 elements, when all
ai = 0 the mean field is ∼−1, reflecting the fact that
all elements go to the lower well, as expected. However,
when one of the ai is 1 (i.e. N1 = 1, N0 = 99), the mean
field evolves to ∼ 1, reflecting the fact that all elements
have been attracted to the upper well now, driven by this
one different element. So even though only one element in
the network would have evolved to the upper well in the
uncoupled case, when strongly coupled, all 100 elements
are dragged rapidly to the upper well.
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Fig. 6: (Colour on-line) Time evolution of the elements in
the array of size N = 100, where only one element has a1 = 1
(denoted by arrow) and 99 elements have ai = 0. Here coupling
strength C = 1 and bias b=−0.05.

One can analyze the dynamics by considering the
random fluctuations of 〈x〉 about the true thermodynamic
average xav (∼ 0), which leads to the following effective
dynamics of each element:

ẋi = (1−C)xi−x3i + ai+ b+Cxav +Dη (5)

= Feff (xi)+Dη,

where η is unit variance Gaussian noise with strength
D=C/

√
N . The probability P (x) of obtaining the

system in state x for the elements, can be analyzed
by solving for the steady-state distribution arising
from the relevant Fokker Planck equation, namely
P (x) =A exp(−2φ(x)/D), where A is a normalization
constant and −∂φ(x)/∂x= Feff (x) [5]. Using this we
verify that the uncoupled symmetric case, i.e. with C = 0
and b= 0, yields the following: elements with ai = 0 yield
equal probability of residence in either of the two wells
(centered around 1 and −1), and for elements with ai = 1
the probability P (x) shifts entirely to the upper well
(∼ 1). When there is no coupling or very weak coupling,
this is indeed the case in our simulations as well.
However, for strong coupling (C ∼ 1), we have a very

different scenario: when all ai = 0 (with N →∞) and even
the slightest negative bias, P (x) peaks sharply in a well
with x< 0. That is, the entire system is synchronized and
attracted to the lower well. Contrast this to the unsyn-
chronized situation in weak coupling, where the elements
go to either upper or lower well depending on their
initial state. Similarly, for strong coupling, even a slightly
positive bias drives all the elements to the upper well.
Now consider the strong-coupling case with a few ai = 1.

The elements with ai = 1 have P (x) centered sharply at
a well ∼ 1 (as ai acts as a positive bias). As these N1
elements evolve to the upper well, xav becomes slightly
positive, and even elements with ai = 0 experience a
positive bias: b+Cxav > 0, which shifts P (x) entirely to
a well at x> 0. Following the small initial positive push,
there is a strong positive feedback effect that drives the
xav to more and more positive values, and consequently
the stable attracting well shifts rapidly towards ∼ x∗+.

One can also rationalize this mechanism intuitively as
follows: when the initial system has x∼ 0, namely the
system is poised on the “barrier” between the two wells,
the state is tipped to the well at x∗+ if ẋ > 0 and to the
lower well at x∗− if ẋ < 0. Now, initial F (x)∼ 0 as the
system is at the unstable maximum of the potential, and
ẋi ∼ ai+ b+(〈x〉−xi), where b is close to 0, and 〈x〉−xi is
small in magnitude. So for elements with ai = 1, ẋ∼ 1, and
for ai = 0, ẋ is also positive, though small in magnitude, as
xi < 〈x〉. After this infinitesimal initial push towards x∗+,
all elements evolve rapidly towards that stable upper well,
as F (x) gets increasingly positive.
Robustness of the phenomena: In order to gauge the

generality of our observations, we have considered differ-
ent nonlinear functions F (x) in eq. (1). For example,
we explored a system of considerable biological interest,
namely, a system of coupled synthetic gene networks. We
used the quantitative model, developed in [5], describing
the regulation of the operator region of λ phase, whose
promoter region consists of three operator sites. The chem-
ical reactions describing this network, given by suitable
rescaling yields [5]

Fgene(x) =
m(1+x2+ασ1x

4)

1+x2+σ1x4+σ1σ2x6
− γxx,

where x is the concentration of the repressor. The nonlin-
earity in this Fgene(x) leads to a double-well potential,
and different γ introduces varying degrees of asymmetry
in the potential. We studied a system of coupled genetic
oscillators given by: ẋi = Fgene(xi)+C(〈x〉−xi)+ ai+ b,
where C is the coupling strength, and b is a small global
bias. We observe similar features in this system as well.
In addition, we studied various different coupling forms.

For instance, a system of N -coupled nonlinear systems,
where the evolution of element i is given by

ẋi = F (xi)+ ai+C〈x〉+ b, (6)

where C is the coupling strength and 〈x〉 is the mean field
given by eq. (2), and F (x) is a suitable nonlinear function.
Furthermore, we considered small-world networks, where
varying sets of regular links were replaced by random
connections. Lastly, we explored networks with different
ranges of coupling, namely the coupling occured over
increasingly large subsets of neighbours, up to the global
coupling limit. Qualitatively, the same ultra-sensitivity
to heterogeneity has been observed for all these different
dynamical systems and coupling forms.
Potential application: Lastly, this unexpected central

observation of scalable ultra-sensitivity may find potential
applications in tackling problems dealing with a very large
number of variables. For instance, consider the following
difficult general question: in a large unsorted database
of items does there exist even a single special item,
namely, posed in layman’s language (following [6]): “In
a haystack, does there exist even a single needle?”. We
answer this question without having to go through the
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Scalable ultra-sensitivity

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  2  4  6  8  10

M
ea

n 
F

ie
ld

time

Fig. 7: (Colour on-line) Evolution of the mean field as a
function of time for different system sizes: 100 (red solid), 1000
(black dashed) and 10000 (blue dotted), with N1/N = 0.01
and bias b=−0.005. Clearly, the time needed to reach the
attracting state does not depend on N .

entire “haystack” (namely, scan the full database). Rather,
we have to make only one measurement to obtain the
answer, as we explain below.
Without loss of generality, we use the bistable elements

to stably encode N binary items (0 or 1) by setting ai
(i= 1, . . . , N) to take values 0 or 1, respectively (see
fig. 1(a)). This creates a (unsorted) binary database.
Then, using the scalable ultra-sensitivity demonstrated
above, one can search this arbitrarily large database for
the existence of a single different bit (say a single 1 in
a string of 0’s) by making just one measurement of the
evolved mean field of the whole array. That is, a single
global operation can determine the existence of very
few special items in a given, arbitrarily large, unsorted
database of general items.
Additionally, we observed that the special element with
ai = 1 always reaches the upper well much faster than
the other elements, when the initial state is centered
closely around the barrier. For instance, a network of 1000
elements, with only one ai = 1 (b=−0.0001, C = 1), evolv-
ing from states drawn from a gaussian distribution with
standard deviation ∼ 0.1 centered around zero, sampled
over 106 random initial realizations yields the following:
the average time taken for the element with a1 = 1 to
reach the upper well (within accuracy of ∼ 0.1) is ∼ 1,
while the time taken by all other elements is ∼ 4. So in the
context of search, the first element that crosses a predeter-
mined threshold will be the item being searched for. This
is loosely analogous to a “time-of-flight” scenario, where
the first element to reach the prescribed state triggers the
answer. So one can also determine the exact element i that
has ai = 1 in the array dominated by ai = 0.
Furthermore, we have a look-up table relating critical
N1 to global bias b (cf. fig. 5). So by sweeping b we can
find where the crossover to the upper well occurs. This
average critical value can be used to gauge the number of
ones present in the system as well.

The significant feature here that allows this massive
parallelization, is the fact that the time taken to reach
the attracting mean-field value does not scale with system
size (see fig. 7). In fact, the time taken to reach the mean
field that encodes the output is independent of N .
Another important feature of this scheme is that it

employs a single simple global operation, and does not
entail accessing each item separately at any stage. In
comparison, for example, a conventional algorithm can
take up to ∼N steps to answer this question [6].
In summary, the collective response of N globally

coupled bistable elements can strongly reflect the pres-
ence of very few non-identical elements in a very large
array of otherwise identical elements. Counter-intuitively,
the mean field evolves to the stable state of the minor-
ity population, rather than that of the bulk of the array.
Adjusting the global bias enables us to observe robust one-
bit sensitivity to diversity in this array. Further, the time
needed to reach the attracting state does not increase with
system size. Thus, this phenomenon has much relevance to
the problem of massively parallelized search. Lastly, this
scalable ultra-sensitivity is a generic and robust phenom-
enon, and can potentially be observed in social and biolog-
ical networks [7], coupled nano-mechanical resonators [8],
and coupled laser arrays [9].
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