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Chapter 1

Introduction

Who traces life and seeks to give
Descriptions of the things that live

Begins with 'Killing to Dissect'
He gets the pieces to insPect

The lifeless limbs beneath his knife
All parts - but link which gave them life.

Goethe

The answer to the question of life, the universe
and everything is twenty-two.

Douglas Adams

Since the development of the electronic computer in the 1940s, the serial processing
computational paradigm has successfully held sway. It has developed to the point

where it is now ubiquitous. However, there are many tasks which are yet to be
successfully tackled computationally. A case in point is the multifarious activities
that the human brain performs regularly, including pattern recognition, associative
recall, etc. which is extremely difficult, if not impossible to do using traditional
computation.

This problem has led to the development of non-standard techniques to tackle sit-
uations at which biological information processing systems excel. One of the more
successful of such developments aims at "reverse-engineering" the biological appara-
tus itself to find out why and how it works. The field of neural network models has
grown up on the premise that the massively parallel distributed processing and con-
nectionist structure observed in the brain is the key behind its superior performance.
By implementing these features in the design of a new class of architectures and
algorithms, it is hoped that machines will approach human-like ability in handling
real-world situations.

Network models of computation have been enjoying a period of revival for quiet
some time now, from the perspective of both theory and applications [85]. These



models comprise networks of large numbers of simple processing elements, usually
having continuously varying activation values and stochastic threshold dynamics.
The activity of these elements, z; ( i : I, 2, ..., N ) at some time instant f, are
determined by the temporal evolution equation:

r ; ( t )  -  F (E iWo i r l ( t - I )  -  0 t ) , ,

where, 0; is an internal threshold (usually taken as zero), Wii is the connection weight
from element j to element i, and F is a nonlinear activation function. If. Wij > 0,
the synaptic connection between neurons i and j is called ercitatory; if Wi1 < 0, it
is called inhibitory. The activation function, tr', usually has a sigmoid form, which
may be of the following type:

F( ' )  :  tanh( l ) ,
a

a being the slope. For a: 0, F is a "hard limitingrr or step function,

x ) ;  :  sgn  (E iWo i  r i  -  0 ; ) .

Different neural network models are specified by

network topology, i.e. the pattern of connections between the elements com-
prising the network,

characteristics of the processing element, e.g. the explicit form of the nonlinear
function F, and the value of the threshold, 0,

o learning rule, i.e. the rules for computing the connection weights W;1 appro-
priate for a given task, and,

o updating rule, e.g. the states of the processing elements may be updated in
parallel (synchronous updating), sequentially or randomly.

One of the limitations of most network models at present is that they are basically
static, i.e., once an equilibrium state is reached, the network remains in that state,
until the arrival of new external input [8]. In contrast, real neural networks show a
preponderance of dynamical behavior. Once we recall a memory, our minds are not
stuck to it, but also recall other associated memories without being prompted by any
additional external stimuli. This ability to 'jump' from one memory to another in
the absence of appropriate stimuli is one of the hallmarks of the brain. It is an ability
which one should try to recreate in a network model if it is ever to come close to
human-like performance in intellectual tasks. One of the possible ways of simulating
such behavior is through models guided by non-equilibrium dynamics, in particular,
chaos. This is because of the much richer dynamical possibilities of such networks,
compared to systems governed by convergent dynamics [86, 7].

There is as yet no universally accepted definition of the term "chaos", but the fol-
lowing working definition is adequate for our purpose [188]:



Chaos rs aperiodic long-term behavior tn deterministic systems that
exhibit sensitiue dependence oL initial conditions.

"Aperiodic long-term behavior" means that there are trajectories which do not settle
down to fixed points, periodic orbits, or quasiperiodic orbits as time, f --+ m. Ape-
riodic behavior is marked by a broad frequency spectrum. "Deterministic" implies
that the system has no random/ noisy inputs or parameters. The irregular behavior
arises from the system's inherent nonlinearity. "sensitive dependence on initial con-
ditions" indicates that nearby trajectories separate exponentially fast. As a result,
any error in our knowledge of the initial conditions of the system will amplify rapidly,
making its behavior effectively unpredictable.

In this thesis, we present some results of theoretical and simulation studies exploring

the occurrence and utility of chaotic dynamics in network computation, particularly

in the case of networks of nonlinear devices ("neurons") of.2 specific classes: excita-

tory and inhibitory. Section 1 discusses the biological evidence for chaotic activity

in the brain. The necessity of modeling to resolve the controversy of interpreting the

biological data is briefly outlined. Even if chaos exists, its role in the functioning of

the brain will need to be established. The possible advantages of chaos for informa-

tion processing is discussed in Section 2. Section 3 contains a brief survey of the work

done in the general area of chaotic neural networks. However, so many papers in

this area have appeared over the past decade, that any review can at best be partial.

We have stressed on work which leads directly to the model network studied in the

thesis. We have also tried to trace the "ancestry" of our model. Finally, in Section

4, the scope of the thesis is outlined.

1.1 Neurobiological evidence of chaos

Evidence of deterministic chaos in neuronal systems was found within a very short

time of the emergence of the field of chaotic dynamics. Experiments on excitable
biological membranes, supplemented by physiologically plausible models of neurons
showed that chaos occurs in the presence of periodic stimulation (either chemical or

electrical). Hayashi et all79] investigated the nonperiodic behavior in self-sustained
oscillation of the internodal cell of Ni,tetla under sinusoidal stimulation. The analysis
of the nonperiodic oscillations revealed chaotic behavior. Chaotic oscillations was also

observed in the molluscan neuron [88]. Another group of researchers [3] studied the

self-sustained oscillation of action potentials in a model axon immersed in calcium-
deficient sea water, whose dynamics was modeled by the Hodgkin-Huxley equations.
The oscillations were analyzed by stroboscopic plots revealing both periodic and
chaotic behavior, determined by the amplitude and the frequency of the stimulating
current. The results corroborated similar studies carried out previously in squid
giant axons (for an overview, see [121] or the article by Aihara and Matsumoto in

[87]). The group of Glass and Guevara l72l showed that recurrent inhibition and



periodic forcing of neural oscillators can produce chaos and explored its implications

in modeling normal and abnormal function in neurophysiology. However, most of

the experimental work was done with the membranes in artificial circumstances, the

electrical and/or chemical stimulations being far from the physiological state. The

occurrence of chaos in equations for membrane excitability even in the absence of

stimulation was shown in [34].

After demonstrating chaos in the case of single neurons, the obvious next step was

to show it in macroscopic neural assemblages, and in particular, the brain. However,

this progression was far from simple. For one thing, the complementary approaches

of experimental observations and modeling used successfully in the case of single

neuron studies, could not be used in the case of the brain. In the absence of any

good model for large-scale brain activity, the evidence for chaos in the brain has to

be searched for in such coarse-grained variables as the EEG. One of the complicating

factors in studying EEG is the continuous presence of background "spontaneous)'
neural activity, seemingly random in appearance. One has to therefore devise a

test to determine whether this apparent randomness is truly stochastic or owes its

origin to deterministic chaos. Analysis of human EEG in various mental states have

put forward several candidates for chaotic activity. Evidence of low-dimensional

chaos was found in some sleep stages [15] and in 'petit mal' epileptic seizures of

small duration [14]. However) any claim based on time-series analysis of EEG data

depends on the efficiency of the tests for determining chaotic activity [65, 67, 27 ,138)-
Such methods usually require large data sets recorded under constant conditions and

relatively free of noise. As all three requirements are hard to satis$r in the case of

biological data, the detection of low dimensional chaos in brain activity has often

been questioned [62]. The dependence of the results of such tests on the brain site at

which recording occurs and on the state of the subject (wakeful, resting, or moving)

have been shown by Pijn et al l7a5l. Several attempts have been made to devise new

tests which will provide unequivocal results when applied to such data sets, including

nonlinear forecasting techniques, but as yet no one has come up with an universally

accepted method.

It has been suggested that the use of chaos control techniques to suppress and enhance

aperiodic activity in brain-slice preparations [155] is a clear-cut evidence in favor

of the presence of chaotic dynamics in the brain. However, such control methods

have been shown to be effective even in non-chaotic systems [37]. The presence of

unstable periodic orbits (UPOs) in chaotic trajectories has suggested a new method,

relying on the detection of such UPOs in the biological time series. Statistically

significant evidence of the existence of UPOs in a crayfish sensory neuron [142] have

been reported, with experimental parameters being kept in ranges typically found in

the animal's natural environment.

Chaos has also been implicated in certain 'dynamical diseases' - medical problems

that have their roots in some underlying dynamical effect [89]. In the neurological

context, abnormal oscillations and complex rhythms often pose clinical problems.

There may be significant oscillation in a neurological control system that does not



normally have a rhythm, e.g., ankle tremor in patients with corticospinal tract dis-
ease, various movement disorders like Parkinson's tremors, and abnormal paroxysmal
oscillations in the discharge of neurons that occur in many seizures. Otherwise, there
may be qualitative changes in the oscillations within an already rhythmic process,
resulting in waking abnormality, alerted sleepwake cycles, or rapidly cycling manic
depression. Epileptic seizures, which recur in an apparently random manner, may be
yet another manifestation of such pathological dynamics. However, in the absence
of any reasonable models of such complex neural processes, the role of chaos in these
dynamical diseases cannot be established beyond doubt.

L.2 Chaos and information processing

Even if chaos does exist in the brain, the issue of whether it plays any role in the
overall cognitive functioning of the brain needs to be looked into. The possible uses
of chaos in the biological world has been discussed in [38]. In the context of brain
functioning, chaos may have the multiple roles of generating and preserving diversity,
maintenance of network activity through disentrainment, dissipation of disturbance
and facilitating learning. All these different functions enable the nervous system
to be adaptive, and continue to function in the face of an uncertain and unknown
environment.

The role of chaos in higher brain functions is discussed in [75]. In the context of
information processing, it would appear at first that chaos can play only a negative
role. However, the brain ts not a conventional processor of information, in the sense
of classical information theory, as developed by Shannon, Wiener and others. In
the case of a highly nonlinear and interconnected system such as the brain, chaotic
dynamics might play a counter intuitive role by enhancing the robustness, reliability
and overall functionality of neural information processing. The particular case of
thalamocortical interactions as a generator of chaotic activity [129] and its possible
role for generating self-referential logic and short-term memory, were explored in

[130] .

Tsuda [192] has suggested several other possible roles of cortical chaos in brain func-
tioning:

Interpreter for input stimuli via thalamo-cortical interactions.

Efficient search mechanism in memory.

Robust information transfer channel for periodically oscillating stimuli.

Providing dynamic storage of long-term memory.

The work on human EEG analysis has suggested a further possible functional role
of chaos [14]. Chaos seems to increase the resonance capacity of the brain, enabling



an extremely rich response to an external stimulus, as compared to stable periodic
oscillations.

However, the most well-known work to obtain empirical physiological evidence for
the possible relevance of chaos to brain function is probably that of W. J. Freeman.
Through his work on the large-scale collective behavior of neurons in the perception
of olfactory stimuli [51], [177] ,152), a concrete link between chaos and cognition has
been built up through a successful combination of biological experiments and com-
putational modeling. Olfactory stimuli are detected by receptor neurons in the nasal
passage. The number of receptors excited by a smell is a measure of the intensity
of the stimulus, while the spatial pattern of activated receptors is dependent on the
nature of the scent. On trapping molecules carrying specific odors these receptors
fire action potentials which are transmitted to the olfactory bulb in the cortex. The
bulb then transmits signals to the olfactory cortex which, in its turn, sends informa-
tion to many regions of the brain. The test animals used by Freeman were trained
to recognize several different odors and were then subjected to smells, both familiar
and unfamiliar. EEG data was recorded by a grid-like array of electrodes placed
over the surface of the olfactory bulb. Most of the time, the EEGs showed irregu-
lar oscillations. However, when an animal inhaled, a "burst" occurred in each EEG
tracing as all the waves in the array became more regular for a brief period until
the animal exhaled. These waves, named gamma waves, had a higher amplitude
and frequency than usual and varied in frequency from 20 - 90 Hz, mostly occurring
in the neighborhood of 40 Hz. Each set of burst recordings had a common carrier
waveform, although the average amplitude of the different recordings varied widely.
It was inferred that, as the carrier waveform changed during each inhalation, even
for the same stimulus, the information about a particular scent was not encoded
in the shape of the waveform but rather, in the spatial pattern of the carrier-wave
amplitudes across the bulb, which remained invariant over trials. On plotting the
different amplitudes of the carrier waves in different regions of a surface representing
the locations in the grid-like array over the olfactory bulb from which they were
obtained, a contour diagram was produced. This remained the same for a specific
scent throughout the testing period. However, if the reinforcement associated with
a scent was altered, then the amplitude contour map representing it also changed.
This indicated that the olfactory bulb is involved in the assigning of meaning to
stimuli. One of the early pointers to chaotic activity was the aperiodicity of the
common carrier wave in the bulb both during and between bursts. Another clue was
the sudden transitions of neuronal networks in the bulb and the cortex from a non-
burst to a active, bursting state. These factors prompted the development of a model
for the olfactory system having cells in a network connected by both excitatory and
inhibitory synapses. Computer simulations of the model showed that it recreated
all the observed behavior of the olfactory system and, thus, was an accurate repre-
sentation of it. The network was then made to produce EEGs of extended bursts
and of inter burst activity for a longer period than is possible in actual EEGs. The



attractor 1 of the underlying dynamics, reconstructed from the EEG data using the
delay-coordinate technique was found to be chaotic in nature. The primary findings
suggested that a separate chaotic attractor is maintained for each stimulus and the
act of perception consists of a transition of the system from the domain of influence
of one attractor to another. Later findings led Freeman to hypothesize that each
brain area (rather than each stimulus) has a chaotic attractor. A specifi.c sensory
stimulus drives the system into a localized region within the attractor, which can be
identified with the appearance of specific spatial patterns of carrier waveform ampli-
tudes, associated with a specific stimulus. Further, the attractors themselves would
have to change as a result of new experience and continued development of the brain.

This description of non equilibrium nervous activity has suggested several possible
functions of chaos:

providing rapid and unbiased access to a number of possible attractors, one of
which is selected dependent upon the stimulus,

acting as a "novelty filter" by failing to converge to any ofthe existing attractors
in the presence of a significant but unidentified stimulus, and,

allowing the system to escape from the existing set of attractors and add a new
response to a novel stimulus under reinforcement

Thus, according to this picture, chaotic activity is fundamental to the general process
of perception.

1.3 A brief survey of chaotic neural network mod-
els

Extremely simplified models of neurons connected in a network via suitable connec-
tion weights were known to implement various logical functions since the 1940s ll24l.
The subject received fresh impetus a decade and half ago due to some breakthroughs,
e.g., the identification of a class of globally connected network models with 'spin glass'
models [126] of condensed matter physics by Hopfield [90] (see also [159]). These
developments were however restricted to networks subject to equilibrium dynamics.
Such systems converge to a time-independent solution (a "fixed-point" attractor)
after starting off from some initial condition. On the other hand, the brain never
settles down to a steady state but appears to exhibit a rich variety of non-periodic
behavior.

lAttractor of a dynamical system is a set to which all neighboring trajectories converge. Stable
fixed points and stable limit cycles are examples. An attractor that exhibits sensitive dependence on
initial conditions is a chaotic attractor.



The development of nonlinear dynamical systems theory - in particular, the discovery
of "deterministic chaos" in extremely simple systems - has furnished the theoretical
tools necessary for analyzing non-equilibrium network dynamics. Neurobiological
studies indicating the presence of chaotic dynamics in the brain and its possible
role in biological information processing has provided further motivation. Thus, the
ability to design networks with aperiodic behavior promises to add a new dimension
to our understanding of how the brain works.

Several efforts in designing and applying chaotic neural networks have been reported.
One of the first such studies was on a continuous time randomly connected network

[108], whose individual elements are inherently stable. The high dimensionality of this
example precludes a theoretical understanding. However, numerical studies showed
the occurrence of chaos.

Chaotic dynamics in a globally connected network with Gaussian distribution of
connection weights was theoretically established by Sompolinsky et al lL80) in the
thermodynamic limit (i.e., N ----v oo: .l{: the number of neurons). This was extended
to networks with variable connectivity in [49], which showed through numerical sim-
ulations that the connectivity is not a determinant parameter for the behavior of
such nets.

Aihara et al [4) developed a neural network model where each neuron behaved as a
chaotic system, due to the introduction of delayed interactions [127]. This model was
shown to be effective in solving optimization problems [35], as the chaotic behavior
could be used as to perform a deterministic version of. simulated annealing [I03].
The network can also be used for image segmentation [77] and associative recall [1].

Recurrent neural networks with a single hidden layer har,'e been proposed as a realiza-
tion of one-dimensional maps of an interval onto itself which show chaotic behavior

[9]. BV encoding images as strings and relating them to stable limit cycles of a chaotic
map [10], such networks have been used to store and retrieve images.

Destexhe [a ] has studied two-dimensional networks of excitatory and inhibitory neu-
rons which evolve in continuous time, with time-delayed interactions. As the number
of neurons, connectivity and synaptic weights are varied, the model exhibits a tran-
sition from spatially uniform oscillations to spatiotemporal chaos. Several properties
of the spatiotemporal phase and the information transport in such a system was
studied. Hayashi [80] has also examined a continuous-time evolving network of exci-
tatory and inhibitory neurons, with the aim of implementing a model of dynamical
associative memory.

Associative recall through non-equilibrium dynamics has also been explored (in the
discrete time evolution context) by Thomas et al 1197), who use a network with
randomly connected excitatory neurons with an inhibitory interneuron that adjusts
their threshold, and Yamakawa et aI1205].

Wang 1197, 24) has studied the simple system of an excitatory and inhibitory neuron
evolving in discrete time to analytically establish the occurrence of chaos. A similar
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system has been studied in [149] to see how onset of chaos occurs as a function of
stimulus intensity. Variants of the model have been used for demonstration of chaos
control methods in the neural context [179, 186].

Coupled map lattices [99] [100] which are networks of chaotic systems coupled to
each other, either locally or globally, share several common features with neural
networks. The relation of a globally coupled map lattice to neural network models
has been explored in [101]. Such systems have, in fact, been proposed as plausible
models of neural computation for performing optimization [94] and associative recall

[e6].
The Hopfield model, which shows only equilibrium dynamics, has been shown to
exhibit chaos when a nonlinear self-feedback term is introduced [33]. The chaotic
dynamics prevents the network from staying at a local minima indefinitely and there-
fore, the system can be used to solve combinatorial optimization problems.

Other network models which show chaos include higher order networks [196],'dy-
namical perceptron'[102], stochastic dynamics networks [57] [192] and networks of
coupled Hindmarsh-Rose neurons [74].

In the present thesis, a particularly simple model comprising excitatory and in-
hibitory neurons, which are updated in parallel after discrete time intervals, is consid-
ered. The 'simplicity' of this model has enabled a detailed theoretical understanding
of its behavior, which could not be achieved in many of the aforementioned models,
owing to their relative complexity. The origin of this model may be traced back to
the work of other investigators as follows:

o Wilson and Cowat l20al derived coupled nonlinear differential equations for
the dynamics of spatially localized populations containing both ercitatory and
inhibitory model neurons. The model showed simple and multiple hysteresis
phenomena as well as limit cycles. However, it evolves in continuous time, as
a result of which the original 2-variable autonomous system is not capable of
exhibiting chaos. As pointed out by Choi and Huberman [36] and explored in
depth later by Wang and Blum [198], the discretisation of time can often lead
to qualitatively different behavior in a network model.

Amari [5] used an additiue model of a neuron to study the dynamics of ran-
domly connected neuron-like elements.

Hopfield [91] used graded-response (i.e., continuous valued) neurons in a glob-
ally coupled network to study the process of associative recall of patterns previ-
ously stored in the network, extending his work on a similar model comprising
binary state neurons [90]. As the connections are symmetric (i.e., 14r;i:Wio),
the network always converges to an equilibrium state. Chaotic activity, which is
a non-equilibrium state, is therefore absent in this model. The network evolves
in continuous time with asynchronous updating of neurons.



Little [113] described a network of binary neural elements, similar to the one
used by Hopfield, but the neurons being updated in parallel.

o Marcus and Westervelt [117] studied a discrete time vercion of the Hopfield
model referred above. The stability of the equilibrium states of this 'iterated

map neural network"fi/as guaranteed by having a symmetric connection weight
matrix.

r Wang's model [197] involves only a pair of excitatory and inhibitory neurons
coupled to each other, with the dynamics evolving in discrete time. It is a
very simple model which can show chaotic behavior. It is the closest relative
of the network model that will be described in the thesis. Note that, one
needs to impose severe restrictions on the model of Wang, as compared to the
one required by the proposed one, to make it analytically tractable. These
restrictions prevented a full exploration of various interesting features of the

system, even in the limited case of an asymmetric, sigmoid activation function.

L.4 Scope of the thesis

The present thesis reports some results of investigation on the behavior of simple
excitatory-inhibitory network models. Almost throughout, a strict form of Dale's
hypothesis (i.e., a neuron has exclusively excitatory or inhibitory synaptic connec-
tions) is assumed. The resultant discrete-time dynamics (with synchronous or parallel

updating of the neural elements) has shown a variety of interesting features. The
underlying motivation is to look at the simplest neural module capable of showing
chaotic behavior and to use the knowledge gained from studying this system to ob-

tain a broader understanding of the possible relevance of chaotic dynamics to brain
functioning.

In Chapter 2, we introduce and analyze the basic module of the excitatory-inhibitory
neural network, which is the main topic of our investigation [169, 170]. As a first
step towards understanding the behavior of such a network, the intrinsic properties

of an excitatory-inhibitory pair is studied in detail. It r(n) and g(n) represent the
activation states of the excitatory and inhibitory elements at the nth time instant,
respectively, then the discrete-time evolution equations are:

n (n * l )  : F r r ( an (n )  -  ba@)  + / (n ) )  , y (n l . l )  : F r z ( c r (n )  -  dv ( " )  + I ' ( n ) )

where F r(r) can be a asymmetric/ anti-symmetric, sigmoidal/ 'piecewise linear'
activation function with parameter p, (a,b,c,d) are the self- and interconnection
weights for the excitatory and inhibitory elements and 1,,I' denote magnitude of ex-
ternal stimuli. The model is analytically treated under the restrictive assumption of
bf a : df c: k (.uy). For k : 1, the 2-dimensional system reduces to an equivalent
1-dimensional system with the corresponding variable being z: tr - g (absorbing a,
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and b in p1 and pr2 respectively), defined in the interval [-1,1]. For sigmoidal acti-
vation functions, this system exhibits a period-doubling route to chaos for sigmoidal
activation function. The piecewise linear activation function also leads to chaotic
behavior following a route similar to that of the "tent" map, defined over the unit
interval [0,1] as:

r ( n I I )  :  an (n ) ,  f o r  0< r (n )  <0 .5 ,
:  a (7 -  * ( n ) ) ,  f o r  0 .5  <  r ( n )  <L ,

where a e [0,2] is a parameter.

The presence of chaos can be analytically demonstrated for a range of values of

0"r, t"). For ft < 1 the chaos is symmetry-broken. There are two chaotic intervals
corresponding to 1r '  [0,1] and 12: [0,-1] which are disconnected, i .e., i f  z(0)ely,
then z(n)e 11Y n necessarily and similarly for 12. However, for k > I the symmetry
is restored and a trajectory starting from any initial z cart go to both I and -I2. The
introduction of a threshold, 9, in this picture enables one to go from chaos to order
through the variation of 0. The concept of a dynamical threshold is motivated by
the existence of refractory period in biological neural network. A detailed study of
the dependence of chaotic activity on the magnitude of threshold has been done.

In Chapter 3, the nonlinear resonance phenomenon exhibited by a chaotic neural
pair, on stimulation with weak periodic signal, is studied lI74). This is remarkably
similar to "stochastic resonance" (SR) seen in non-deterministic systems. SR is a
recently observed nonlinear phenomena in noisy systems, whereby the noise helps
in amplifying a sub threshold signal (which would have been otherwise undetected)
when the signal frequency is close to a critical value. As the output of a chaotic
process is indistinguishable from that of a noisy system, the question of whether a
similar process occurs in the former case is studied in this chapter.

Before looking at the behavior of the excitatory-inhibitory neural pair, we study a
simpler model for analytical convenience. The model chosen is a anti-symmetric
piecewise linear map defined in the interval [-1,1]. The behavior of the system is
controlled by a parameter, a (0 < o < 4). Onset of chaos is seen to occur at a :1.

The chaos is symmetry broken, i.e., the system is restricted to either of the two
sub-intervals (0,1] and (0,-1], depending on initial condition. Symmetry is restored
a t  a :2 .

To observe SR, the value of a is kept close to 2, and then modulated sinusoidally with
amplitude 6 and frequency a;. The response of the system shows a non-monotonic
behavior as u.r is varied, attaining a peak value at u)", a "critical frequency", which
depends on as and 6 - a clear signature of a SR-type phenomenon. Some analytical
calculations have also been done - in particular obtaining the invariant probability
density and the dominant time scale of the time-varying processes. The implication
of the above study is that chaotic neural networks can amplify weak signals in a
noisy background, thus enhancing its information processing capabilities. We have
also studied kinetic aspects, such as hysteresis, of the above model.
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The one-dimensional map equivalent to the excitatory- inhibitory neural model ex-
hibits SR-type behavior similar to that reported above for the anti-symmetric chaotic
map. The dependence of such 'resonance' on the relative magnitudes of p1 and p,2
and other parameters has been studied. Analytical results have been obtained in
the case of piecewise linear activation function. For sigmoidal function, numerical
studies have been done.

Having studied in Chapter 2 the existence of chaotic activity in our proposed model,
in Chapter 4 we proceed to control it [167, 166, 168]. With this objective, piecewise
linear maps are studied as approximations of excitatory-inhibitory neural pairs, for
analytical convenience. In principle, any piecewise linear map can be represented
by a recurrent neural network with properly connected excitatory and inhibitory
elements having appropriate thresholds and linear activation functions with a cutoff.

The "tent" -.p, defined above, is subjected to dynamical variable feedback control.
In this method, a particular interval I : (ns - 6, no + 6) of the unit interval is chosen
and whenever n(n f 1)e1, a feedback of magnitude k ln(n+ 1) - 16l is applied to the
system (k is a constant). The dependence of control on the parameter set (2e,5, k) is
studied in detail and a geometrical understanding of the control process is obtained.

Control is also achieved through the use of a dynamical threshold (as outlined in
Chapter 2). This is same as subjecting the model to small-amplitude periodic per-
turbations. Various periodic cycles can be stabilized by periodically varying the
threshold. A numerical study of the control method has been done.

The chaos control method is then implemented on a network model comprising N
excitatory and N inhibitory elements. The model exhibits both periodic and chaotic
behavior, depending on parameter values. Numerical simulations are carried out for
N:3, the number being kept low for ease of visual representation. The control process
made the chaotic trajectories converge to any one of a large number of possible
unstable periodic attractors. The potentially high storage capacity, as well as, the
extremely rapid speed of convergence, are notable features of the network. The model
also attempts to explain the occurrence of olfactory hallucinations in certain types
of epileptic seizures.

In Chapter 5, the collective dynamics and synchronization in assemblies of coupled
chaotic neural pairs is studied 1176,I74,171]. In the brain, synchronization of neural
assemblies seems to be employed in "visual binding". The question of what happens
if competitive synchronizing interactions occur among different neural assemblies is
the motivation to study such interaction among coupled chaotic systems.

Synchronization can be achieved through both unidirectional and bidirectional cou-
pling among chaotic elements. In the case of unidirectional coupling, an n-dimensional
autonomous system is divided into two parts, a 'driving' and a 'responding' subsys-
tem. A replica of the 'responding' subsystem is then created and driven with the
xa variables of the original system. The two systems will synchronize only if the
'conditional Lyapunov exponents' of the 'responding' subsystem are all negative. For
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bidirectional coupling, the coupling magnitude should be at least greater than half
the magnitude of the Lyapunov exponent of the uncoupled system, for synchroniza-
tion to occur.

Synchronization of chaotic activity among small assemblies of coupled neural pairs

has been numerically studied. In the case of bidirectional coupling of two neural
pairs, on-off intermittency phenomena is observed. For three neural pairs (A,B,C)
coupled to each other, such that (A,B) and (B,C) are connected, but not (A,C),
we find synchronization to occur between (A,C), although neither (A,B) nor (B,C)

synchronize. We call this 'mediated synchronization', as B appears to be mediat-
ing the synchronization process, without itself taking part in it. For unidirectional
coupling, a particularly interesting feature is the effect of competitive interactions
on the synchronization dynamics. To obtain a theoretical understanding of some of

the numerical observations, we study the effect of two 'driving' systems driving a

single 'responding' system, each system being governed by the well-knowt Lorenz
equations. One of the variables (g) of the 'responding' system is defined in terms of

the corresponding variables of the two 'driving' systems as:

A : aar -l (7 - a)Y2

where a is the 'competition' parameter. For o:0 or 1, the conventional Lorenz

attractor is obtained. However, as a -+ 0.5, the resultant chaotic attractor is found to

be qualitatively different and more complex than the conventional Lorenz attractor.

The results of linear stability analysis suggests that the trajectory of the system

moves among the stable and unstable manifolds of a large number of unstable fixed
points. This is responsible for the observed complicated dynamics of the system. We

define a 'desynchronization parameter', 5 and have obtained a scaling relation of 6

with a.

In Chapter 6, we have used excitatory-inhibitory networks to study certain problems

of early vision, the stage of visual processing at which the primitive features of an

image are extracted. Two models have been studied: a two-layer network for segmen-
tation (in particular, object-background discrimination) and a three-layer network

for adaptive smoothing and edge detection.

The segmentation network model consists of a layer of excitatory and a layer of

inhibitory neurons coupled to each other. On presenting the network with a noisy

image, the object and the background portions are found to have different dynamical
behavior, enabling segmentation to be done 11721.

In the three-layer network model, contrast enhancement, followed by edge detection,
is studied. A layered network with a sigmoidal activation function is found to give

high contrast when a gray-level image is processed through it. The interaction be-

tween excitatory and inhibitory neurons results in a filtering process whereby edges
of the image are obtained. This has motivated the designing of a model of retinal
processing. The model consists of an input layer of excitatory neurons (analogous
to the photoreceptor layer in the retina), followed by a layer of coupled pairs of in-
hibitory and excitatory neurons (analogous to the horizontal and bipolar cell layers
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of the retina, respectively). The lateral connections among the inhibitory neurons
and the inter-layer connections between all three layers allows the local gradient of
the image to be computed, the information being fed back to the input layer. An
iterative process is then used to adaptively smooth the image. From the resulting
enhanced image, one can obtain the edges, either by employing an additional pair
of excitatory-inhibitory neuronal layer, or with a conventional gradient thresholding
technique. The proposed model has been implemented on different types of images,
and its performance compared with some existing models for image enhancement
and edge-extraction (namely, Perona-Malik diffusion method and the Canny opera-
tor). Although the model compares favorably with some standard methods of edge
detection, its main contribution lies in the area of adaptive smoothing.

A concluding summary with an outlook on further work that can be done extending
the aforesaid ideas is presented in Chapter 7.
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