Chapter 7

Conclusions

The spirit within nourishes, and mind instilled
Throughout the living parts activates the whole mass
And mingles with the vast frame.

Virgil

Life is not so simple, man!
B. Uma Shankar

We have presented in this thesis some results of investigations, both theoretical and
computational, which demonstrate some of the features of simple networks of excita-
tory and inhibitory neuron-type elements. The main goal was to study the behavior
of the simplest network model capable of producing chaotic behavior. Initially, a
single pair of an excitatory and an inhibitory neuron is described and analyzed in
detail. Then small networks of such pairs are studied in the context of control and
synchronization of their activity. Finally, an attempt is made to utilize such networks
for some image processing tasks, specifically, segmentation and adaptive smoothing.

In the following section, the most important results are briefly summarized, while
the final section provides an outlook to further problems which can be looked at in
the future, as an extension to the investigation reported here.

7.1 Summary of Main Results

e The intrinsic properties of an excitatory-inhibitory neural pair have been stud-
ied with four types of nonlinear activation functions, distinct from each other
in terms of their (i) asymmetric or anti-symmetric nature and (ii) sigmoid or
piecewise linear characteristics. Fixed point, oscillatory and chaotic behaviors
have been found to occur for various parameter values for these different types
of functions, leading to the conclusion that this wide range of dynamics is a
generic feature of excitatory-inhibitory neural pairs, evolving in discrete time.
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¢ In addition to generic features, behavior specific to each type of transfer func-
tion has also been observed. For example, in the case of the piecewise linear
functions, the presence of border-collision bifurcations and multifractal frag-
mentation of the phase space are noted. Neural pairs with sigmoidal activation
functions exhibit a period-doubling route to chaos, which is an universal fea-
ture of unimodal one-dimensional chaotic maps [134, 188]. The anti-symmetric
activation functions show a transition from symmetry-broken chaos (with mul-
tiple coexisting but disconnected chaotic attractors) to symmetric chaos (when
only a single chaotic attractor exists).

e Varying a threshold/ bias parameter or equivalently, introducing a constant
amplitude external stimulus, leads either to transition between chaos and peri-
odic behavior or to coexistence of multiple attractors, depending on the nature
of the variation. In the case of anti-symmetric functions, this causes previously
distinct attractors to be dynamically connected. Hysteresis effect, a possible
mechanism for short-term memory, is observed as the parameter is varied.

e Networks composed of elements having piecewise linear activation functions
are found to be amenable to analytical treatment under some simplifying as-
sumptions. This makes the resultant dynamics effectively equivalent to that of
an one-dimensional piecewise linear map with multiple “folds”. These “folds”
permit the creation and maintenance of localized coherent structures within
a global chaotic activity. This is of relevance to the use of such networks for
information processing. Applications to problems of auto-associative recall,
pattern classification, nonlinear function approximation and periodic sequence
generation are outlined. This serves to indicate the versatility of such networks
and possible areas where they maybe successfully used.

o In the presence of low-amplitude, low-frequency external stimulation, the chaotic
neural pair with anti-symmetric activation function is found to exhibit a type of
nonlinear resonance phenomenon, which can be looked upon as a determin-
istic analogue of “stochastic resonance” (SR) [59]. By introducing a piecewise
linear system to study this phenomenon, a detailed understanding of the res-
onance process is obtained. The chaotic trajectory of the system is found to
switch between two halves of the phase space at a rate which ‘resonates’ with
the frequency of an externally applied periodic perturbation (both multiplica-
tive and additive). By periodically modulating the parameter at a specific
frequency, we observe the existence of resonance where the response of the sys-
tem (in terms of the residence-time distribution) is maximum. The possible
application of nonlinear resonance for the enhancement of subthreshold signals
is indicated by showing that the excitatory- inhibitory neural pair shows sim-
ilar resonance behavior when the external input is a small amplitude periodic
signal. The “characteristic frequency” at which the system response is maxi-
mum is obtained explicitly in terms of the network parameters, in the case of
the piecewise linear activation function. It is found that as the amplitude of
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the signal increases, the response of the system also increases up to a limit.
An expression for the “critical signal amplitude”, above which the response
saturates, is also obtained.

Control mechanisms for the chaos observed in excitatory-inhibitory neural pairs
have been studied. Two types of control have been proposed: (i) propor-
tional variable feedback and (ii) small-amplitude periodic forcing. A physical
understanding of the control mechanism is obtained in the case of a single
excitatory-inhibitory pair. Control of a 3-neuron pair network has been studied
through computer simulations. A possible connection between undesirable sta-
bilization of periodic cycles by external periodic stimulus and the phenomenon
of epileptic hallucination is suggested.

Collective dynamics and synchronization of small assemblies of neural pairs are
analyzed. Both unidirectional and bidirectional couplings between the neural
pairs have been studied. For bidirectional coupling, intermittent synchroniza-
tion is observed in the case of two coupled neural pairs, while the case of
three coupled neural pairs show the more interesting feature of “mediated”
synchronization. For unidirectional coupling, the phenomena of “frustrated
synchronization” has been studied in detail. The well-known Lorenz system of
equations has been used as a model system for ease of theoretical analysis. A
‘desynchronization’ parameter has been defined, which shows a scaling relation
with the scaled coupling parameter.

The utility of chaotic dynamics in certain image processing tasks such as,
segmentation and adaptive smoothing, has been studied. A two-dimensional
network of locally coupled excitatory-inhibitory pairs is used to study segmen-
tation. Bilevel segmentation is achieved through different dynamical responses
of neural pairs corresponding to “object” and “background”. An approximate
expression for the critical input stimulus magnitude, that leads to transition
between the two different dynamical responses, is obtained in the case of an
isolated neural pair. Noisy, synthetic images as well as “real-life” images are
used to show the effectiveness of the segmentation procedure.

Adaptive smoothing of gray-level images is achieved with a three layer network
of excitatory, inhibitory and excitatory neurons, respectively. The output of
this network is then used to find the edges of the input image by using a
standard difference operator. The network has been used on several “real-life”
images, and the results compare favorably to those of some standard methods
of edge detection. The network architecture has been inspired by the structure
of the outer plexiform layer of the retina and it has been proposed as a model
for retinal information processing.
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7.2 Outlook

In this work, we have stressed on ‘simple’ network models: ‘simple’ not only in terms
of the size of the networks considered when compared to the brain (consisting of
~ 10" neurons and ~ 10" synapses), but ‘simple’ also in terms of the properties
of the constituent elements (i.e., the ‘neurons’) themselves, in that, most of the
physiological details of real neurons are ignored. Biological neurons are far more

complicated, and a lot of computation is achieved at the level of the single neuron
itself [105].

The point is to see what is essential and what is unnecessary detail for the proper
functioning of biological neuronal networks. To do that one has to throw away as
much of the complexity as possible to make the model tractable - while at the same
time retaining those features of the system which make it interesting. So, while
our modeling is indeed inspired by neuroscience, we are not concerned with actually
mimicking the activity of real neuronal systems.

Our prime concern is what functional role chaos might be playing in the brain. As
the brain itself is still a relatively poorly understood system, we have instead tried
to look at what artificial networks can do with chaos. Hopefully, this will give us a
clearer understanding of how chaos might actually be used in the brain to perform
cognitive tasks. By resorting to a simple model, where we can perform detailed
theoretical analysis, we can obtain a deep understanding of its behavior. This can
then be used fruitfully to study the more complex entity, that is the brain.

In the work reported here, many interesting features were observed. However, to
see their relevance to the actual biological situation, we have to make a connection
between our results and the behavior of the brain. Such attempts have already been
made, as for example, in Chapter 4, where, undesired control of neurobiological chaos
is sought to be connected to the phenomenon of epileptic hallucinations. However,
to take these efforts further, the complexity of the model needs to be increased
systematically in a step-by-step manner, with detailed analysis of the new features
thus revealed, in each step of the way.

For example, in this work we have been concerned exclusively with ‘neurons’ evolv-
ing in discrete time intervals. Biological neurons are better modeled by differential
equations which evolve in continuous time. However, this is not really a limitation as
any N-dimensional discrete-time dynamical system may be related to a correspond-
ing (N + 1)-dimensional continuous-time dynamical system through the concept of
Poincare sections [188]. It follows that the discrete-time model we have studied
has a higher dimensional differential equation analogue, which will show qualitatively
similar behavior. Several differential equation models already exist which describe
the activity of single neurons, with varying degrees of fidelity. A popular model which
is biologically motivated and yet simple enough for ease of analysis is the Bonhoeffer-
van der Pol (BVP) system of equations. Such systems have been shown to exhibit
chaos when subjected to forced oscillations of specific amplitude and frequency [148].
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However, large networks of BVP or similar systems have, as yet, not been studied
in detail. Investigation of the collective behavior of such continuous-time neural net-
work models, and linking the results to those reported here, should go a long way in
establishing the genericity of our findings.

Real biological systems reside in an extremely noisy environment. This is incorpo-
rated in neural models by using stochastic updating rule and/or explicit introduction
of a term representing external noise. The former can be represented as a form of
multiplicative noise, whereas the latter is a strictly additive form of noise [192]. Phys-
iologically, additive noise may originate from threshold fluctuations of a dendritic
potential, while multiplicative noise could be due to stimulus-induced stochastic re-
lease of vescicles, containing neurotransmitter chemicals, from the synapses. We plan
to introduce similar features in our model in the future. In dissipative chaotic sys-
tems, the effect of external noise seems to be limited to destroying the fine structure
of the bifurcation sequence [41]. The interaction of deterministic chaos and stochastic
noise in the network will be interesting to study.

One important point not addressed here is the issue of learning. The connection
weights { W;; } have been assumed constant, as they change at a much slower time
scale compared to that of the neural activation states. However, modification of the
weights due to learning will also cause changes in the dynamics. Such bifurcation
behavior, induced by weight changes, will have to be taken into account when devising
learning rules for specific purposes. The interaction of chaotic activation dynamics
at a fast time scale and learning dynamics on a slower time scale might yield richer
behavior than that seen in the present model [47]. The first step towards such a
program would be to incorporate time-varying connection weights in the model. In
[196], time-dependence of a suitable system parameter was shown to give rise to
interesting dynamical behaviors, e.g., transition between periodic oscillations and
chaos. This suggests that varying the environment can facilitate memory retrieval if
dynamic states are used for storing information in a neural network. The introduction
of temporal variation in the connection weights, independent of the neural state
dynamics, should allow us to develop an understanding of how the dynamics at two
time-scales interact with each other.

Parallel to this we have to look at the learning dynamics itself. Freeman [54],
among others, has suggested an important role of chaos in the Hebbian model of
learning [84]. This is one of the most popular learning models in the neural network
community and is based on the following principle postulated by Hebb [84] in 1949:

When an axon of cell A is near enough to excite cell B and repeatedly
or consistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A’s efficiency, as one of
the cells firing B, is increased.

According to the principle known as synaptic plasticity, the synapse between neu-
rons A and B increase its “weight”, if the neurons are simultaneously active. By
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invoking an “adiabatic approximation”, we can separate the time scale of updating
the connection weights from that of neural state updating. This will allow us to
study the dynamics of the connection weights in isolation.

The final step will be to remove the “adiabatic approximation”, so that the neural
states will evolve, guided by the connection weights (as studied in the thesis), while
the connection weights themselves will also evolve, depending on the activation states
of the neurons, as:

Wij(n + 1) = F(Wi;(n), Xi(n), X;(n)),

where X (n) and W(n) denote the neuron state and connection weight at the nth
instant, F is a nonlinear function that specifies the learning rule, and € is related
to the time-scale of the synaptic dynamics. The cross-level effects of such synaptic
dynamics interacting with the chaotic network dynamics might lead to significant
departure from the overall behavior of the network described here.

The proposed extensions and modifications of the neural network model presented
here will most probably lead to behavior yet unexpected. Considering that the model
already exhibits such complex behavior, the incorporation of the details suggested
above should provide results, which will be comparable to actual neurobiological
data.

On a broader front, chaos may play a substantial role in resolving the stability-
plasticity dilemma that confronts a wide range of complex adaptive systems, in-
cluding neural networks. This dilemma can be framed in terms of the following
questions:

e How can a learning system be designed to remain plastic (adaptive) in response
to significant events and yet remain stable in response to irrelevant events ?

e How does the system know when to switch between its stable and plastic modes
to achieve stability without rigidity and plasticity without disorder ?

Transitions between chaotic and ordered behavior are a general feature of complex
adaptive systems and form the subject matter of the recently emerged discipline of
Artificial Life (A-Life). It studies how local rules of interaction between elements of a
complex system can give rise to collectively emergent global behavior of the system.
This phenomena has been studied in the relatively simple system of cellular automata
(CA) models by Langton [109]. CA are rule driven systems, defined by specifying the
transformation rules that map a given initial state of the system to the final state.
They can show a wide variety of behavior, ranging from highly ordered to totally
chaotic. By using a variable parameter, changing which alters the behavior of the
system, it has been seen that, at the region where transition from ordered to chaotic
behavior occurs, the system exhibits complexity in the sense that it is capable of
universal computation. Langton has extended this finding to the generalization that
“complexity occurs at the edge of chaos”. The substance of this assertion is that
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while an ordered system is too rigid to learn from experience, and chaotic systems
are too unstable to exist in a competitive environment, complexity arises only in
those systems having the right blend of order and chaos. Only systems poised at
the “edge of chaos” , the critical state at which complexity is most likely to emerge,
are rigid enough to survive, while being capable of suitably adapting themselves to
a changing environment. While these findings are only for the specific system of
CA, and not yet universally accepted, they are nonetheless highly suggestive. The
brain, being a complex adaptive system also, might be indulging in a similar kind of
tradeoff between order and chaos. Studying chaotic models of neural activity thus
might provide us with an an understanding of how complexity emerges not only in
the brain, but in a broad family of complex adaptive systems, of which it is a member.
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