
Chapter 7

Conclusrons

The spirit within nourishes, and mind instilled
Throughout the living parts activates the whole mass

And mingles with the vast frame.
Virgil

Life is not so simPle, man!
B. Uma Shankar

We have presented in this thesis some results of investigations, both theoretical and

computational, which demonstrate some of the features of simple networks of excita-

tory and inhibitory neuron-type elements. The main goal was to study the behavior

of the simplest network model capable of producing chaotic behavior. Initially, a

singie pair of an excitatory and an inhibitory neuron is described and analyzed in

detail. Then small networks of such pairs are studied in the context of control and

synchronization of their activity. Finally, an attempt is made to utilize such networks

for some image processing tasks, specifically, segmentation and adaptive smoothing.

In the following section, the most important results are briefly summarized, while

the final section provides an outlook to further problems which can be looked at in

the future, as an extension to the investigation reported here.

7.L Summary of Main Results

o The intrinsic properties of an excitatory-inhibitory neural pair have been stud-

ied with four types of nonlinear activation functions, distinct from each other

in terms of their (i) asymmetric or anti-symmetric nature and (ii) sigmoid or

piecewise linear characteristics. Fixed point, oscillatory and chaotic behaviors
have been found to occur for various parameter values for these different types

of functions, leading to the conclusion that this wide range of dynamics is a

generic feature of excitatory-inhibitory neural pairs, evolving in discrete time.
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In addition to generic features, behavior specific to each type of transfer func-
tion has also been observed. For example, in the case of the piecewise linear
functions, the presence of border-collision bifurcations and multifractal frag-
mentation of the phase space are noted. Neural pairs with sigmoidal activation
functions exhibit a period-doubling route to chaos, which is an universal fea-
ture of unimodal one-dimensional chaotic maps [134, 188]. The anti-symmetric
activation functions show a transition from symmetry-broken chaos (with mul-
tiple coexisting but disconnected chaotic attractors) to symmetric chaos (when
only a single chaotic attractor exists).

Varying a threshotd/ bias parameter or equivalently, introducing a constant
amplitude external stimulus, leads either to transition between chaos and peri-
odic behavior or to coexistence of multiple attractors, depending on the nature
of the variation. In the case of anti-symmetric functions, this causes previously
distinct attractors to be dynamically connected. Hysteresis effect, a possible
mechanism for short-term memory, is observed as the parameter is varied.

Networks composed of elements having piecewise linear activation functions
are found to be amenable to analytical treatment under some simplifying as-
sumptions. This makes the resultant dynamics effectively equivalent to that of
an one-dimensional piecewise linear map with multiple "folds". These "folds"
permit the creation and maintenance of localized coherent structures within
a global chaotic activity. This is of relevance to the use of such networks for
information processing. Applications to problems of auto-associative recall,
pattern classification, nonlinear function approximation and periodic sequence
generation are outlined. This serves to indicate the versatility of such networks
and possible areas where they maybe successfully used.

In the presence of low-amplitude, low-frequency external stimulation, the chaotic
neural pair with antlsymmetric activation function is found to exhibit a type of
nonlinear resonance phenomenon, which can be looked upon as a determin-
istic analogue of "stochastic resonance" (SR) [59]. By introducing a piecewise
linear system to study this phenomenon, a detailed understanding of the res-
onance process is obtained. The chaotic trajectory of the system is found to
switch between two halves of the phase space at a rate which 'resonates' with
the frequency of an externally applied periodic perturbation (both multiplica-
tive and additive). By periodically modulating the parameter at a specific
frequency, we observe the existence of resonance where the response of the sys-
tem (in terms of the residence-time distribution) is maximum. The possible
application of nonlinear resonance for the enhancement of subthreshold signals
is indicated by showing that the excitatory- inhibitory neural pair shows sim-
ilar resonance behavior when the external input is a small amplitude periodic
signal. The "characteristic frequency" at which the system response is maxi-
mum is obtained explicitly in terms of the network parameters, in the case of
the piecewise linear activation function. It is found that as the amplitude of
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the signal increases, the response of the system also increases up to a limit.
An expression for the "critical signal amplitude", above which the response
saturates, is also obtained.

Control mechanisms for the chaos observed in excitatory-inhibitory neural pairs
have been studied. Two types of control have been proposed: (i) propor-

tional variable feedback and (ii) small-amplitude periodic forcing. A physical
understanding of the control mechanism is obtained in the case of a single
excitatory-inhibitory pair. Control of a 3-neuron pair network has been studied
through computer simulations. A possible connection between undesirable sta-
bilization of periodic cycles by external periodic stimulus and the phenomenon
of epileptic hallucination is suggested.

Collective dynamics and synchronization of small assemblies of neural pairs are
analyzed. Both unidirectional and bidirectional couplings between the neural
pairs have been studied. For bidirectional coupling, intermittent synchroniza-
tion is observed in the case of two coupled neural pairs, while the case of
three coupled neural pairs show the more interesting feature of "mediated"
synchronization. For unidirectional coupling, the phenomena of "frustrated
synchronization" has been studied in detail. The well-known Lorenz system of

equations has been used as a model system for ease of theoretical analysis. A
'desynchronization'parameter has been defined, which shows a scaling relation
with the scaled coupling parameter.

The utility of chaotic dynamics in certain image processing tasks such as,

segmentation and adaptive smoothing, has been studied. A two-dimensional
network of locally coupled excitatory-inhibitory pairs is used to study segn'Len-
tation. Bilevel segmentation is achieved through different dynamical responses
of neural pairs corresponding to "object" and "background". An approximate
expression for the critical input stimulus magnitude, that leads to transition
between the two different dynamical responses, is obtained in the case of an
isolated neural pair. Noisy, synthetic images as well as "real-life" images are
used to show the effectiveness of the segmentation procedure.

Adaptiue smoothing of gray-level images is achieved with a three layer network
of excitatory, inhibitory and excitatory neurons, respectively. The output of
this network is then used to find the edges of the input image by using a

standard difference operator. The network has been used on several "real-life"
images, and the results compare favorably to those of some standard methods
of edge detection. The network architecture has been inspired by the structure
of the outer plexiform layer of the retina and it has been proposed as a model
for retinal information processing.
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7.2 Outlook

In this work, we have stressed on 'simple' network models: 'simple' not only in terms
of the size of the networks considered when compared to the brain (consisting of
- 1011 neurons and - 1015 synapses), but 'simple' also in terms of the properties
of the constituent elements (i.e., the 'neurons') themselves, in that, most of the
physiological details of real neurons are ignored. Biological neurons are far more
complicated, and a lot of computation is achieved at the level of the single neuron
itself [105].

The point is to see what is essential and what is unnecessary detail for the proper
functioning of biological neuronal networks. To do that one has to throw away as
much of the complexity as possible to make the model tractable - while at the same
time retaining those features of the system which make it interesting. So, while
our modeling is indeed inspired by neuroscience, we are not concerned with actually
mimicking the activity of real neuronal systems.

Our prime concern is what functional role chaos might be playing in the brain. As
the brain itself is still a relatively poorly understood system, we have instead tried
to look at what artifi,cial networks can do with chaos. Hopefully, this will give us a
clearer understanding of how chaos might actually be used in the brain to perform
cognitive tasks. By resorting to a simple model, where we can perform detailed
theoretical analysis, we can obtain a deep understanding of its behavior. This can
then be used fruitfully to study the more complex entity, that is the brain.

In the work reported here, many interesting features were observed. However, to
see their relevance to the actual biological situation, we have to make a connection
between our results and the behavior of the brain. Such attempts have already been
made, as for example, in Chapter 4, where, undesired control of neurobiological chaos
is sought to be connected to the phenomenon of epileptic hallucinations. However,
to take these efforts further, the complexity of the model needs to be increased
systematically in a step-by-step manner, with detailed analysis of the new features
thus revealed, in each step of the way.

For example, in this work we have been concerned exclusively with 'neurons' evolv-
ing in discrete time intervals. Biological neurons are better modeled by differential
equations which evolve in continuous time. However, this is not really a limitation as
any lf-dimensional discrete-time dynamical system may be related to a correspond-
ing (N * 1)-dimensional continuous-time dynamical system through the concept of
Poincare sections [18S]. It follows that the discrete-time model we have studied
has a higher dimensional differential equation analogue, which will show qualitatively
similar behavior. Several differential equation models already exist which describe
the activity of single neurons, with varying degrees of fidelity. A popular model which
is biologically motivated and yet simple enough for ease of analysis is the Bonhoeffer-
van der Pol (BVP) system of equations. Such systems have been shown to exhibit
chaos when subjected to forced oscillations of specific amplitude and frequency [148].
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However, large networks of BVP or similar systems have, as yet, not been studied
in detail. Investigation of the collective behavior of such continuous-time neural net-
work models, and linking the results to those reported here, should go a long way in
establishing the genericity of our findings.

Real biological systems reside in an extremely noisy environment. This is incorpo-
rated in neural models by using stochastic updating rule and/or explicit introduction
of a term representing external noise. The former can be represented as a form of
multiplicative noise, whereas the latter is a strictly additive form of noise [192]. Phys-
iologically, additive noise may originate from threshold fluctuations of a dendritic
potential, while multiplicative noise could be due to stimulus-induced stochastic re-
lease of vescicles, containing neurotransmitter chemicals, from the synapses. We plan
to introduce similar features in our model in the future. In dissipative chaotic sys-
tems, the effect of external noise seems to be limited to destroying the fine structure
of the bifurcation sequence [41]. The interaction of deterministic chaos and stochastic
noise in the network will be interesting to study.

One important point not addressed here is the issue of learning. The connection
weights { Wni } have been assumed constant, as they change at a much slower time
scale compared to that of the neural activation states. However, modification of the
weights due to learning will also cause changes in the dynamics. Such bifurcation
behavior, induced by weight changes, will have to be taken into account when devising
learning rules for specific purposes. The interaction of chaotic activation dynamics
at a fast time scale and learning dynamics on a slower time scale might yield richer
behavior than that seen in the present model [47]. The first step towards such a
program would be to incorporate time-varying connection weights in the model. In

[196], time-dependence of a suitable system parameter was shown to give rise to
interesting dynamical behaviors, e.g., transition between periodic oscillations and
chaos. This suggests that varying the environment can facilitate memory retrieval if
dynamic states are used for storing information in a neural network. The introduction
of temporal variation in the connection weights, independent of the neural state
dynamics, should allow us to develop an understanding of how the dynamics at two
time-scales interact with each other.

Parallel to this we have to look at the learning dynamics itself. Freeman [54],
among others, has suggested an important role of chaos in the Hebbian model of
learning [84]. This is one of the most popular learning models in the neural network
community and is based on the following principle postulated by Hebb [84] in 1949:

When an axon of cell A is near enough to excite cell B and repeatedly
or consistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A's efficiency, as one of
the cells firing B, is increased.

According to the principle known as synaptic plasticity, the synapse between neu-
rons A and B increase its "weight", if the neurons are simultaneously active. By
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invoking an "adiabatic approximation", we can separate the time scale of updating

the connection weights from that of neural state updating. This will allow us to

study the dynamics of the connection weights in isolation.

The final step will be to remove the "adiabatic approximation", so that the neural

states will evolve, guided by the connection weights (as studied in the thesis), while

the connection weights themselves will also evolve, depending on the activation states

of the neurons, as:

Wni(n + 1)  :  F, (W; i (n) ,  X6(n) ,  X i (n) ) '

where X(") and W'(n) denote the neuron state and connection weight at the nth

instant, F is a nonlinear function that specifies the learning rule, and e is related

to the time-scale of the synaptic dynamics. The cross-level effects of such synaptic

dynamics interacting with the chaotic network dynamics might lead to significant

departure from the overall behavior of the network described here.

The proposed extensions and modifications of the neural network model presented

here will most probably lead to behavior yet unexpected. Considering that the model

already exhibits such complex behavior, the incorporation of the details suggested

above should provide results, which will be comparable to actual neurobiological

data.

On a broader front, chaos may play a substantial role in resolving the stability-

plasticitg dilemma that confronts a wide range of complex adaptive systems, in-

cluding neural networks. This dilemma can be framed in terms of the following

questions:

How can a learning system be designed to remain plastic (adaptive) in response

to significant events and yet remain stable in response to irrelevant events ?

How does the system know when to switch between its stable and plastic modes

to achieve stability without rigidity and plasticity without disorder ?

Transitions between chaotic and ordered behavior are a general feature of complex

adaptive systems and form the subject matter of the recently emerged discipline of

Artificial Life (A-Life). It studies how local rules of interaction between elements of a

complex system can give rise to collectively emergent global behavior of the system.

This phenomena has been studied in the relatively simple system of cellular automata
(CA) models by Langton [109]. CA are rule driven systems, defined by specifying the

transformation rules that map a given initial state of the system to the final state.

They can show a wide variety of behavior, ranging from highly ordered to totally

chaotic. By using a variable parameter, changing which alters the behavior of the

system, it has been seen that, at the region where transition from ordered to chaotic

behavior occurs, the system exhibits complexity in the sense that it is capable of

universal computation. Langton has extended this finding to the generalization that

"complerity occurs at the edge of chaos". The substance of this assertion is that
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while an ordered system is too rigid to learn from experience, and chaotic systems
are too unstable to exist in a competitive environment, complexity arises only in
those systems having the right blend of order and chaos. Only systems poised at

the "edge of chaos" , the critical state at which complexity is most likely to emerge,
are rigid enough to survive, while being capable of suitably adapting themselves to
a changing environment. While these findings are only for the specific system of

CA, and not yet universally accepted, they are nonetheless highly suggestive. The
brain, being a complex adaptive system also, might be indulging in a similar kind of
tradeoff between order and chaos. Studying chaotic models of neural activity thus
might provide us with an an understanding of how complexity emerges not only in
the brain, but in a broad family of complex adaptive systems, of which it is a member.

119



Bibliography

[1] M Adachi and K. Aihara. Associative dynamics in a chaotic neural network.
Neural Network\ 10:83-98, 1997.

[2] R. D. Adams and M. Victor. Principles of Neurology. McGraw-Hill' New

York, 1977.

[3] K Aihara, G. Matsumoto, and Y. Ikegaya. Periodic and non-periodic responses

of a periodically forced Hodgkin-Huxley oscillator. J. Theo. Biol.,109:249-
269, 1984.

[4] K. Aihara, T. Takabe, and M. Toyoda. Chaotic neural networks. Phys. Lett.

4,744:333-340, 1990.

[5] S. Amari. Characteristics of random nets of analog neuron-like elements . IEEE

Trans. Systems, Man and Cybernetics, 2:643-657, 7972.

[6] S. Amari and M. Arbib, editors. Competition and Cooperation in Neural

Nets. Springer-Verlag, New York, 1982.

[7] S Amari and K. Maginu. Statistical neurodynamics of associative memory.

Neural Nettrorks, 1:63-73, 1988.

[S] D J. Amit. Modeling Brain Function. Cambridge University Press, Cam-
bridge, 1989.

[9] Y.V. Andreyev, Y. L. Belsky, A. S. Dmitriev, and D. A. Kuminov. Information
processing using dynamical chaos: neural networks implementation. IEEE

Trans. N eural N etworks, 7 :290-299, 1996.

[10] Y. V. Andreyev, A. S. Dmitriev, and S. O. Starkov. Information processing in

one-dimensional systems with chaos. IEEE Trans. Circuits and Systems -

1,44:2I-28, 1997.

[11] V. S. Anishchenko, A. B. Neiman, and M. A. Safanova. Stochastic resonance
in chaotic systems. J. Stat. Phys., 70:183-196, 1993.

[12] P. Ashwin, J. Buescu, and I. Stewart. Bubbling of attractors and synchronisa-
t ion of chaotic osci l lators. Phys. Lett. A, 193:126-139, 1994.

t20



[13] A. Atiya and P. Baldi. Oscillations and synchronizations in neural networks:
An exploration of the labeling hypothesis . Int. J. Neural Systems, 1:\03-124,
1989.

[14] A. Babloyantz and A. Destexhe. Low-dimensional chaos in an instance of
epilepsy. Proc. NatL Acad. Sci. USA, 83:3513-3517,1986.

[15] A. Babloyant z, J. M. Salazar, and C. Nicolis. Evidence of chaotic dynamics of
brain activity during the sleep cycle. Phys. Lett. 4,111:152-156, 1985.

[16] P. Baldi and A. Atiya. How delays affect neural dynamics and learning. IEEE
Trans. Neural N etworks, 5:612-621, 1994.

[17] J. Basak. Connectionist models for certain tasks related to object recog-
nition. PhD thesis, Indian Statistical Institute, Calcutta, 1994.

[1S] C. Beck and F. Schlogl. Thermodynamics of Chaotic Systems. Cambridge
University Press, Cambridge, 1993.

[19] R. Benzi, A. Sutera, and A. Vulpiani. The mechanism of stochastic resonance.
J. Phys. A, 14:L453-L457, 1981.

[20] H. Bersini and V. Calenbuhr. Frustrated chaos in biological networks. J. Theo.
Biol.,  188:187-200, 1997.

[21] S. Biswas, N. R. Pal, and S. K. Pal. Smoothing of digital images using the
concept of diffusion process. Pattern Recognition,29:497-510, 1996.

[22] S. N. Biswas and B. B. Chaudhuri. On the generation of discrete circular
objects and their properties. Computer Vision, Graphics and Image Pro-
cessing, 32: 158-170, 1985.

[23] A. Blake and A. Zisserman. Visual Reconstruction. MIT Press, Cambridge,
Mass. ,  1987.

l24l E. K. Blum and X. Wang. Stability of fixed points and periodic orbits and
bifurcations in analog neural networks. Neural Networks, 5:577-587, 1992.

[25] Y. Braiman and I. Goldhirsch. Taming chaotic dynamics with weak periodic
perturbations. Phys. Reu. Lett., 66:2545-2548, 1991.

[26] Y. Braiman, J. F. Lindner, and W. L. Ditto. Taming spatiotemporal chaos
with disorder. Nature, 378:465-467, 1995.

l27l D. S. Broomhead and R. Jones. Time-series analysis. Proc. Roy. Soc. Lond.
A, 423:103-12I,1989.

[28] S. Campbell and D. L. Wang. Synchronization and desynchronization in a
network of locally coupled Wilson-Cowan oscillators. IEEE Trans. Neural
N ettnorks, 7 :54L-554, 1996.

t2t



[29] J. Canny. A computational approach to edge detection. IEEE Trans. Pattern
Analysis and Machine Intelligence, 8:679-698, 1986.

[30] T. W. Carr and I. B. Schwartz. Controlling high-dimensional unstable steady
states using delay, duration and feedback. Physica D., 96:17-25,1996.

[31] T. L. Carroll and L. M. Pecora. Stochastic resonance and crises. Phys. Reu.
Lett.., 70:576-579, 1993.

[32] F. Catt6, P. L. Lions, J. M. Morel, and T. Coll. Image selective smoothing
and edge detection by nonlinear diffusiot. SIAM J. Num. Anal..,29:L82-I93,
1992.

[33] Z. Chang-song, C. Tian-lun, and H. Wu-qun. Chaotic neural network with
nonlinear self-feedback and its application to optimization. Neurocomputing,
14:209-222, 7997.

[34] T. R. Chay. Chaos in a three-variable model of an excitable ceIl. Physica D,
76:233-242, 1985.

[35] L. Chen and K. Aihara. Chaotic simulated annealing by a neural network
model with transient chaos. Neural Networks, 8:915-930, 1995.

[36] M. Y. Choi and B. A. Huberman. Digital dynamics and the simulation of
magnetic systems. Phys. Reu. 8,28:2547-2554, 1983.

[37] D. J. Christini and J. J. Collins. Controlling nonchaotic neuronal noise using
chaos control techniques. Phys. Reu. Lett., 75:2782-2785, 1995.

[38] M. Conrad. What is the use of chaos ? In A. V. Holden, editor, Chaos, pages
3-L4. Manchester University Press, Manchester, 1986.

[39] M. Cosnard and D. Moumida. Dynamical properties of an automaton with
memory. In F. Fogelman Souli6, Y. Robert, and M. Tchuente, editors, Au-
tomata Networks in Computer Science, pages 82-100. Manchester Univer-
sity Press, Manchester, 1987.

[40] A. Crisanti, M. Falcioni, G. Paladin, and A. Vulpiani. Stochastic resonance in
deterministic chaotic systems. J. Phys. A,27:L597-L603, 1994.

[41] J. Crutchfield, M. Nauenberg, and J. Rudnick. Scaling for external noise at
the onset of chaos. Phys. Reu. Lett, 46:933-935, 1981.

[42] K. M. Cuomo, A. V. Oppenheim, and S. H. Strogatz. Synchronization of
Lorenz-based chaotic circuits with applications to communications. IEEE
Trans. Circuits U Systems II, 40:626-633, 1993.

[43] V. Deshpande and C. Dasgupta. A neural network storing individual patterns
in a l imit cycle. J. Phys. A,24:5705-5119, 1991.

r22



[44] A. Destexhe. Oscillations, complex spatiotemporal behavior and information
transport in networks of excitatory and inhibitory neurons. Phys. Reu. E,
50:1594-1606, 1994.

[45] M. Ding and W. Yang. Stability of synchronous chaos and on-off intermittency
in coupled map latt ices. Phys. Reu. 8,56:4009-4016, 1997.

[46] A. S. Dmitriev, M, Shirokov, and S. O. Starkov. Chaotic synchronization in
ensembles of coupled maps. IEEE Trans. Circuits and Systems-1, 44:978-
926, 1997.

[47] D. Dong. Dynamic properties of neural networks. PhD thesis, California
Institute of Technology, 1991.

[48] J. K. Douglass, L. Wilkens, E. Pantazelou, and F. Moss. Noise enhancement
of information transfer in crayfish mechanoreceptors by stochastic resonance.
N ature, 365:337-340, 1993.

[49] B. Doyon, B. Cessac, M. Quoy, and M. Samuelides. Control of the transition
to chaos in neural networks with random connectivity. Int. J. Bif. Chaos,
3 :279 -29 I ,1993 .

[50] R. M. Everson. Scaling of intermittency period with dimension of a partition
boundary. Phys. Lett. A,722:477-475, 1987.

[51] W. J. Freeman. Simulation of chaotic EEG patterns with a dynamic model of
the olfactory system. BioL Cybern., 56:739-150, 1987.

[52] W. J. Freeman. The physiology of perception. Scientific American,, 264
(2 ) :78 -85 ,1991 .

[53] W. J. Freeman. Tutorial on neurobiology: From single neurons to brain chaos.
Int. J. Bif. Chaos, 2:45I-482, 7992.

[54] W. J. Freeman. Chaos in the brain: Possible roles in biological intelligence.
Int. J. Intelligent Systems, 10:71-88, 1995.

[55] H. Fujisaka and T. Yamada. Stability theory of synchronized motion in
coupled-oscillator systems. Prog. Theor. Phys., 69:32-47, 1983.

[56] H. Fujisaka and T. Yamada. Stability theory of synchronized motion in
coupled-oscillator systems IV. Instability of synchronized chaos and new inter-
mittency. Prog. Theor. Phys., 75:1087-1104, 1986.

[57] T. Fukai and M. Shiino. Asymmetric neural networks incorporating the Dale
hypothesis and noise-driven chaos. Phys. Reu. Lett.,64:1465-1468, 1990.

[58] P. M. Gade, R. Rai, and H. Singh. Stochastic resonance in maps and coupled
map latt ices. Phys. Reu. E,56:2518-2526, 7997.

123



[59] L. Gammaitoni, P. Hbnggi, P. Jung, and F. Marchesoni. Stochastic resonance.

Reu. Mod. Phys.,70:223 287, 1998.

[60] L. Gammaitod, F. Marchesoni, and S. Santucci. Stochastic resonance as a

bona fi,de resonance. Phys. Reu. Lett.,74:1052-1055, 1995.

[61] A. Ghosh, N. R. Pal, and S. K. Pal. Object-background classification using

Hopfieldtypeneuralnetwork. Int. J. Patt. Rec. Artif. Int'.,6:989-1008, 1992.

162l L. Glass and M. c. Mackey. From clocks to chaos: The Rhythms of Life.

Princeton University Press, Princeton, N. J., 1988.

[63] L. Glass and C. P. Malta. Chaos in multilooped negative feedback systems. J'

Theo. Biol.,145:217 223, 1990.

[64] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Addison-Wesley,

Reading, Mass., 1992.

[65] P. Grassberger. Generalized dimensions of strange attractors. Phys. Lett' A,

97:227-230, 1983.

[66] P. Grassberger. New mechanism for deterministic diffusion. Phys. Reu. A,

28:3666-3667, 1983.

[67] P. Grassberger and I. Procaccia. Characterization of strange attractors. Phys.

Reu. Lett, 50:346-349, 1983.

[68] C. M. Gray, P. Konig, A. K. Engel, and W. Singer. Oscillatory responses in

cat visual cortex exhibit inter-columnar synchronization which reflects global

stimulus properties. Nature, 338:334-337, 1989.

[69] C. Grebogi, E. Ott, and J. A. Yorke. Crises, sudden changes in chaotic attrac-

tors and chaotic transients. Physica D,7:I8l-200, 1983.

[70] S. Grossberg and D. Somers. Synchronized oscillations during cooperative

feature linking in a cortical model of visual perception. Neural Networks,

4:453-466, 1991.

[71] S. Grossman and H. Fujisaka. Diffusion in discrete nonlinear dynamical sys-

tems. Phys. Reu. A,26:1779-1782, 1982.

[72] M. R. Guevara, L. Glass, M. C. Mackey, and A. Shrier. Chaos in neurobiology.
IEEE Trans. Systems, Mo,n and Cybernetics, 13:790-798' 1983.

[73] S. K. Han, W. S. Kim, and H. Kook. Temporal segmentation of the stochastic

oscillator neural network. Phys. Reu. 8,58:2325-2334, 1998.

174] D. Hansel and H. Sompolinsky. Synchronization and computation in a chaotic

neural network. Phys. Reu. Lett, 68:718-727., 1992.

124



[75] E. Harth. Order and chaos in neural systems: An approach to the dynamics
of higher brain functions. IBEE Trans. Systems, Man and Cybernetics,
13:782-789, 1983.

[76] E. Harth and G. Pertile. The role of inhibition and adaptation in sensory
information processi ng. K y b ernetik, 70 :32-37, 1972.

[77] M. Hasegawa, T. Ikeguchi, T. Matozaki, and K. Aihara. Improving image
segmentation by chaotic neurodynamics. IEICE Trans. Fundamentals E,

79-A:1630-1637, 1996.

[78] M. Hasler and Y. L. Maistrenko. An introduction to the synchronization of

chaotic systems: coupled skew tent maps. IEEE Trans. Circuits and Sys-
tems -1, 44856-866, 1997.

[79] H. Hayashi, M. Nakao, and K. Hirakawa. Chaos in the self-sustained oscillation
of an excitable biological membrane under sinusoidal stimulation. Physics

Letters A, 88:265-266, 1982.

[80] Y. Hayashi. Oscillatory neural network and learning of continuously trans-

formed patterns. Neural Networks, 7:219-231, 1994.

[81] R. He and P. G. Vaidya. Analysis and synthesis of synchronous periodic and

chaotic systems. Phys. Reu. A, 46:7387-7392,7992.

[S2] J. F. Heagy, T. L. Carroll, and L. M. Pecora. Desynchronization by periodic

orbits. Phys. Reu. 8,52:R1253-R1256, 1995.

[83] J. F. Heagy, N. Platt, and S. M. Hammel. Characterization of on-off intermit-
tency. Phys. Reu. 8,49:1140-1150, 1994.

[84] D. O. Hebb. The Organization of Behauior. Wiley, New York, 1949.

[85] J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the Theory of Neural

Computatfon. Addison-Wesley, Reading, Mass., 1991.

[86] M. W. Hirsch. Convergent activation dynamics in continuous time networks.

N eural Networks, 2:331-349, 1989.

[87] A. V. Holden, editor. Chaos. Manchester University Press, Manchester, 1986.

[88] A. V. Holden, W. Winlow, and P. G. Haydon. The induction of periodic and
chaotic activity in a molluscan neuron. Biol. Cybern., 43:169-173,1982.

[89] D. Holton and R. May. The chaos of disease response and competition. In

T. Mullin, editor, The Nature of Chaos, pages 183-200. Oxford University
Press, Oxford, 1993.

125



[90] J. J. Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proc. Natl. Acad. Sci. (USA), 79:2554-2558, 1982.

[91] J' J. Hopfield. Neurons with graded response have collective computational
properties like those of two-state neurons. Proc. NatL Acad. Sci. (USA),
81:3088-3092, 1984.

[92] G. Hu, Z. Qu, and K. He. Feedback control of chaos in spatiotemporal systems.
Int. J. Bif. Chaos, 5:901-980, 199b.

[93] E. R. Hunt. Stabilizing high-period orbits in a chaotic system: The diode
resonator. Phys. Reu. Lett, G7:1953-1gbb, 1991.

[94] M. Inoue and S. Fukushima. A neural network of chaotic oscillators . Prog.
Theor. Phys., 87 :77I-774, 7992.

[95] E. Ippen, J. Lindner, and W. L. Ditto. Chaotic resonance: a simulation. J.
Stat. Phys., 70:437-450, 1993.

[96] S. Ishii, K. Fukumizu, and S. Watanbe. A network of chaotic elements for
information processittg. Neural Networks, g:25-40, 1996.

[97] L. Jin, P. N. Nikiforuk, and M. M. Gupta. Absolute stability conditions for
discrete-time recurrent neural networks. IEEE Trans. Neural Networks,
5:954-964, 1994.

[98] L. Jin, P. N. Nikiforuk, and M. M. Gupta. Approximation of discrete-time state
space trajectories using dynamic recurrent neural networks. IEEE Trans.
Automatic ControL, 40:769-176, 1995.

[99] K. Kaneko. Pattern dynamics in spatiotemporal chaos. Physica D,34:I-4I,
1989.

[100] K. Kaneko. Spatiotemporal chaos in one- and two-dimensional coupled map
Iattices. Physica D, 37:60-82, 1989.

[i01] K. Kaneko. Clustering, coding, switching, hierarchical ordering and control in
a network of chaotic elements. Physica D, 41\J7-I72, Igg0.

[102] O. Kinouchi and M. H. R. Tragtenberg. Modeling neurons by simple maps.
Int. J. Bif. Chaos, 6:2343-2360,1990.

[103] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. S cience, 220:677-680, 1983.

[104] R. Klages. Deterministic diffusion in one-dimensional chaotic dynamical
systems. PhD thesis, Technische Universitat Berlin, 1ggb.

[105] C. Koch. Computation and the single neuron. Nature,385:207-270, 1997.

126



[106] J. M. Kowalski, G. L. Albert, and G. W. Gross. Asymptotically synchronous

chaotic orbits in systems of excitable elements. Phys. Reu. A,42:6260-6263,

1990.

[107] M. K. Kundu and S. K. Pal. Edge detection based on human visual response'

Int. J. Systems Sci., 19:2523-2542,1988.

[108] K. E. Kurten and J. W. Clark. Chaos in neural systems. Phys. Lett' A,

LI4:4L3-418, 1986.

[109] C. G. Langton. Computation at the edge of chaos: phase transitions and

emergent computation Physica D, 42:12-37, 1990.

[110] T. Y. Li and J. A. Yorke. Period three implies chaos. Am. Math. Monthly.,

82:985 -  992,  1975.

[111] T. Lindeberg. Scale-space for discrete signals. IEEE Trans. Pattern Analysis

and M achine Intellig ence, 12:234-254, 1990.

[112] J. F. Lindner, B. K. Meadows, W. L. Ditto, M. E. Inchiosa, and A. R. Bul-

sara. Array enhanced stochastic resonance and spatiotemporal synchroniza-

t ion. Phys. Reu. Lett.,75:3-6, 1995.

[113] W. A. Little. The existence of persistent states in the brain. Math' Biosci.,

19:101-120,  I974.

[114] E. N. Lorenz. Deterministic nonperiodicflow. J. Atm. Sci.,20:730-141, 1963.

[115] J. Losson and M. C. Mackey. Coupling induced statistical cycling in two dif-

fusively coupled maps. Physica D, 72:324-342, 1994.

[116] P. K. Maiti, P. K. Dasgupta, and B. K. Chakrabarti. Improved performance

of the Hopfield and Little neural network models with time delayed dynamics'

Int. J. Mod. Phys. 8,9:3025-3037, 1995.

[117] C. M. Marcus and R. M. Westervelt. Dynamics of iterated-map neural net-

works. Phys. Reu. A,40:501-504, 1989.

[11S] D. Marr. Vision: A computational inuestigation into the human repre-

sentation and, processing of uisual information. W. H. Freeman, New York,

1982.

[119] D. Marr and E. Hildreth. Theory of edge-detection. Proc. Roy. Soc' Lond-

8,207:787 217,  1980.

[120] M. A. Matias and J. Giiemez. Stabilization of chaos by proportional pulses in

the system variables. Phys. Reu. Lett.,72:1455-1458, 1994.

t27



[121] G. Matsumoto, K. Aihara, Y. Hanyu, N. Takahashi, S. Yoshizawa, and
J. Nagumo. Chaos and phase locking in normal squid axons. Phys. Lett. A,
723:762-766, 1987.

[122] R. M. May. Bifurcations and dynamic complexity in ecological systems. Ann.
lf. Y. Acad,. Sci.,3l6:577 529,1978.

[123] J. L. McCauley. Chaos, Dynamics and Fractals. Cambridge University
Press, Cambridge, 1993.

[724) W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in
nervous activity. Bull. Math. Biophys., 5:115-133, 1943.

[125] B. McNamara and K. Wiesenfeld. Theory of stochastic resonance. Phys. Reu.
4,39:4854-4869, 1989.

[126] M. Mezard, G. Parisi, and M. A. Virasoro. Spin Glass Theory and Beyond.
World Scientific, Singapore, 1987.

lI27) J. Nagumo and S. Sato. On a response characteristic of a mathematical neuron
model. Kybernetik, 10:155-164, 1972.

[128] G. Nicolis, C. Nicolis, and D. McKernan. Stochastic resonance in chaotic dy-
namics. J. Stat. Phys.,70:125-139, 1993.

[129] J. S. Nicolis. Should a reliable information processor be chaotic ? Kybernetes,
1l:269-274, 1982.

[130] J. S. Nicolis and I. Tsuda. Chaotic dynamics of information processing: The
magic number "seven plus minus two" revisited. Bull. Math. Biol.., 47:343-
365,  1995.

[131] K. N. Nordstrom. Biased anisotropic diffusion - A unified regularization and
diffusion approach to edge detection. Technical Report CSD-89-514, Dept. of
Computer Science, Univ. of California, Berkeley, 1989.

[132] H. E. Nusse and J. A. Yorke. Border-collision bifurcations including "period-
two to period-three" for piecewise smooth systems. Physica D,57:39-57,1992.

[133] H. E. Nusse and J. A. Yorke. Border-collision bifurcations for piecewise smooth
one-dimensional maps. Int. J. Bif. Chaos, 5:189-207, 1995.

[134] E. Ott. Chaos in Dynamical Systems. Cambridge University Press, Cam-
bridge, 1993.

[135] E. Ott, C. Grebogi, and J. A. Yorke. Controlling chaos. Phys. Reu. Lett.,
64 :1196-1199 ,1990 .

128



[136] E. Ott and J. C. Sommerer. Blowout bifurcations: The occurrence of riddled
basins and on-off intermittency. Phys. Lett. ,4, 188:39-47, L994.

[137] D. Ottoson. Physiology of the Neruous System. Macmillan, London, 1983.

[138] N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw. Geometry
from a time series. Phys. Reu. Lett., 47:772-715, 1980.

[139] N. R. Pal and S. K. Pal. A review of image segmentation techniques. Pattern
Reco g niti o n, 26:127 7 -I29 4, 1993.

[140] L. M. Pecora and T. L. Carroll. Synchronization in chaotic systems. Phys.
Reu. Lett., 64:827-824, 1990.

[141] L. M. Pecora and T. L. Carroll. Driving systems with chaotic signals. Phys.
Reu. A, 44:2374-2383, 1991.

lL42) X. Pei and F. Moss. Characterization of low-dimensional dynamics in the
crayfish caudal photoreceptor. Nature, 379:678-621, 1996.

[143] C. J.Perez, A. Corral, A. Diaz-Guilera, K. Christensen, and A. Arenas. On self-
organized criticality and synchronization in lattice models of coupled dynamical
systems. Int. J. Mod. Phys. B, 10:1111-1151, 1996.

'7441 P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffu-
sion. IEEE Trans. Pattern Analysis and Machine Intelligence) 12:629-639,
1990.

[145] J. P. Pijn, J. Van Neerven, A. Noest, and F. H. Lopes da Silva. Chaos or noise
in EEG signals: Dependence on state and brain site. Electroenceph. Ctin.
N europ sy ch., 79:37I-381, 1991.

[146] A. S. Pikovsky and P. Grassberger. Symmetry breaking bifurcation for coupled
chaotic attractors. J. Phys. A, 24:4587-4597, 1991.

[147] N. Platt, S. M. Hammel, and J. F. Heagy. Effects of additive noise on on-off
intermittetcy. Phys. Reu. Lett., 72:3498-3501, 1994.

[148] S. Rajasekar and M. Lakshmanan. Period-doubling bifurcations, chaos, phase-
locking and devil's staircase in a Bonhoeffer - Van der Pol oscillator. Physica
D, 32:146-152, 1988.

[149] D. H. Rao and M. M. Gupta. Chaotic behavior of a dynamic neural network.
It Proc. Third Int. Conf. Fuzzy Logic, Neural Nets and Soft Computing,
(IIZUKA-91), pases 533-534, 1994.

[150] E. Reibold, W. Just, J. Becker, and H. Benner. Stochastic resonance in chaotic
spin-wave dynamics. Phys. Reu. Lett, 78:3101-3104, 1997.



[151] P. Saint-Marc, J. S. Chen, and G. Medioni. Adaptive smoothing : a general tool
for early vision. IEEE Trans. Pattern Analysis and Machine Intelligence,
13:574-529, 1991.

[152] H. Sakaguchi and K. Tomita. Bifurcations of the coupled logistic map. Prog.
Theo. Phys., 78:305-315, 1987.

[153] P. P. Saratchandran, V. M. Nandakumaran, and G. Ambika. Dynamics of the
logistic map under discrete parametric perturbation. Pramana - J. Phys.,
47:339-345, 1996.

[154] J. Sarraille and Peter DiFalco. FDS, ver 0.3 (fractal dimension estimation
software) ,1992. (available at ftp:l I ftp.immt.pwr.wroc.pll publ fractal).

[155] S. J. Schiff, K. Jerger, D. H. Duong, T. Chang, M. L. Spano, and W. L. Ditto.
Controlling chaos in the brain. Nature,370:615-620, 1994.

[156] T. B. Schillen and P. Konig. Binding by temporal structure in multiple feature
domains of an oscillatory neuronal network. Biol. Cybern.,70:397 405,1994.

[157] N. J. Schulmann. Chaos in piecewise linear systems. Phys. Reu. A,28:477-
479, 1993.

[158] C. Seko and K. Takatsuka. Rhythmic hopping in a one-dimensional crisis map.
Phys.  Reu.  E,54:956-959,  1996.

[159] D. Sherrington. Spin glasses and neural networks. In J. G. Taylor and C. L. T.
Mannion, editors, New Deuelopments in Neural Computing, pages 15-30.
Adam Hilger, Bristol, 1989.

[160] I. Shimada and T. Nagashima. A numerical approach to ergodic problems of
dissipative dynamical systems. Prog. Theor. Phys.., 61:1605-1616, 1979.

[161] T. Shinbrot, C. Grebogi, E. Ott, and J. A. Yorke. Using small perturbations
to control chaos. Nature,363:411-417, 1993.

[162] T. Shinbrot and J. M. Ottino. Using horseshoes to create coherent structures.
Phys. Reu. Lett.,7I:843 846, 1993.

[163] S. W. Sides, R. A. Ramos, P. A. Rikvold, and M. A. Novotny. Kinetic Ising
system in an oscillating external field: stochastic resonance and residence-time
distr ibutions. J. Appl. Phys., 81:5597-5599, 1997.

[164] S. W. Sides, P. A. Rikvold, and M. A. Novotny. Stochastic hysteresis and
resonance in a kinetic Ising system. Phys. Reu E (to appear), 1998. (http:l I
xxx.lanl.gov f abs f cond-mat/ 97L2027).

[165] S. Sinha. Unidirectional adaptive dynamics. Phys. Reu. E, 49:4832-4842,
1994.

130



[166] S. Sinha. Chaos control in an oscillatory neural network model. J. IETE,
42:205-273, 1996.

[167] S. Sinha. Controlled transition from chaos to periodic oscillations in a neural
network model. Physica A, 224:433-446., 1996.

[168] S. Sinha. Geometry of chaos control in a one-dimensional map. In Proc. Int.
Conf. Dynamical Systems, Bangalore, page 61, 1997.

[169] S. Sinha. Chaos and synchronization in simple excitatory-inhibitory neural
network models. In Proc. Int. Conf. Nonlinear Dynamics and Brain Func-
tioning, Bangalore, page 54, 1998.

[170] S. Sinha. Chaotic dynamics in iterated map neural networks with piecewise
linear activation function. Fundamenta Informaticae (to appear), 1998.

[171] S. Sinha. Frustrated synchronization in competing drive-response coupled
chaotic systems. LANL e-print, 1998. (http:ll xxx.lanl.govf absl chao-dyn/
9808017) .

[172] S. Sinha and J. Basak. Response of an excitatory-inhibitory neural network
to external stimulation: An application to image segmentation. LANL e-print,
1998. (http: I I xxx.lanl.gov I abs I cond-mat/).

[173] S. Sinha and S. Biswas. Associative memory for gray-level images. In Proc.
IEEE Int. Conf. Image Processing, Santa Barbara, Calif., pages 871-873,
1997.

[174] S. Sinha and B. K. Chakrabarti.
rnap. Phgs. Reu. E(to appear),

Deterministic SR in a piecewise linear chaotic
1998. (available at http: I I xxx.lanl.gov f abs f

chao-dyn/ 9803033).

[175] S. Sinha and P. K. Das. Dynamics of simple one-dimensional maps under
perturbation. Pramana - J. Phys.,48:87-98, 1997.

[176] S. Sinha and S. Kar. Competition among synchronizing chaotic systems: Impli-
cations for neural computation. In T. Yamakawa and G. Matsumoto, editors,
Method,ologies for th.e conception, design and application of intelligent
sgstems, pages 700-703. World Scientific, Singapore, 1996.

lI77) C. A. Skarda and W. J. Freeman. How brains make chaos in order to make
sense of the world. Behauioral and, Brain Sciences,10:161-195, 1987.

[178] S. M. Smirnakis, M. J. Berry, D. K. Wayland, W. Bialek, and M. Meister.
Adaptation of retinal processing to image contrast and spatial scale. Nature,
386:69-73, 1997.

[179] R. V. Sole and L. M. de la Prida. Controlling chaos in discrete neural networks.
Phys.  Let t .  4 ,199:65-69,  1995.

131



[180] H. Sompolinsky, A. Crisanti, and H. J. Sommers. Chaos in random neural
networks. Phys. Reu. Lett.,6I:259-262, 1988.

[181] H. Sompolinsky, D. Golomb, and D. Kleinfeld. Global processing of visual
stimuli in a neural network of coupled oscillators. Proc. NatL Acad. Sci.
U S A, 87 :7200-7204, 1990.

[182] C. Sparrow. The Lorenz Equations: Bifurcations, Chaos, and Strange
Attractors. Springer-Verlag, New York, 1982.

[183] O. Sporns, G. Tononi, and G. M. Edelman. Modeling perceptual grouping
and figure-ground segregation by means of active reentrant connections. Proc.
Natl.  Acad. Sci. USA, 88:129-133, 1991.

[184] V. Srinivasan, P. Bhatia, and S. H. Ong. Edge detection using a neural network.
P attern Recognition, 27:7653 1662, 1994.

[185] P. Sterling. The Retina. In G. M. Shepherd, editor, The Synaptic Organiza-
tion of the Brain, pages t70-273. Oxford University Press, Oxford, 1990.

[186] N. Stollenwerk. Self-controlling chaos in neuromodules. In H. Herrmann,
E. Poppel, and D. Wolf, editors, Supercomputing in Brain Research: From
Tomography to Neural Networks, pages 427 426. World Scientific, Singapore,
1995.

[187] L. Stone. Period-doubling reversals and chaos in simple ecological models.
N ature, 365:677 -620, 1993.

[188] S. H. Strogatz. Nonlinear Dynamics and Chaos. Addison-Wesley, Reading,
Mass., 1994.

[189] M. M. Sushchik, N. F. Rulkov, and H. D. I. Abarbanel. Robustness and stabil-
ity of synchronized chaos: An illustrative model. IEEE Trans. Circuits and
Sy stems- I, 44:867-873, 1997.

[190] J. Testa and G. A. Held. Study of a one-dimensional map with multiple basins.
Phys. Reu. 4,28:3085-3089, 1983.

[191] C. M. Thomas, W. G. Gibson, and J. Robinson. Stability and bifurcations in
an associative memory model. Neural Networks, 9:53-66, 1996.

[192] I. Tsuda. Dynamic link of memory: Chaotic memory map in nonequilibrium
neural networks. Neural Networks, 5:313-326, 1992.

[193] E. Vaadia, I. Haalman, M. Abeles, H. Bergman, Y. Prut, H, Slovin, and
A. Aertsen. Dynamics of neuronal interactions in monkev cortex in relation to
behavioral events. Nature, 373:515-518, 1995.

132



[194] C. von der Malsburg and J. Buhmann. Sensory segmentation with coupled
neural oscillators. Biol. Cybern., 67:233-242, 1992.

[195] D. L. Wang. Emergent synchrony in locally coupled neural oscillators. IEEE
Trans. Neural N etworks., 6:94I-948, 1995.

[196] L. Wang. Oscillatory and chaotic dynamics in neural networks under varying
operating conditions. IEEE Trans. Neural Netuorks, 7:7382-1388, 1996.

[197] X. Wang. Period-doublings to chaos in a simple neural network: An analytical
proof. Compler Sgstems, 5:425-447., 1991.

[198] X. Wang and E. K. Blum. Discrete time vs continuous time models of neural
networks. J. Comp. Syst. Sci.,45:1-19, 1992.

[199] J. Weickert and B. Benhamouda. Why the Perona-Malik filter works. Technical
Report DIKU-TR-97122, Dept. of Computer Science, Univ. of Copenhagen,
1997. (available at http: I I www.diku.dk/ users I joacLnml).

[200] F. S. Werblin. Functional organization of a vertebrate retina: sharpening up
in space and intensity. Ann. N. Y. Acad. Sci.,190:75-85,7972.

[201] F. S. Werblin. The control of sensitivity in the retina. Sci. Am.,,228 (L):77-79,
1973.

[202] R. T. Whitaker and S. M. Ptzer. A multi-scale approach to nonuniform diffu-
sion. CVGIP: Image Understanding, 57:99-110, 1993.

[203] I. C. Whitfield. Neurocommunications: An Introduction. John Wilev,
Chichester, 1984.

[204] H. R. Wilson and J. D. Cowan. Excitatory and inhibitory interactions in
localized populations of model neurons. Biophys. J.,12:I-24, 1972.

[205] T. Yamakawa, M. Shimono, and T. Miki. Design criteria for robust associative
memory employing non-equilibrium network. In T. Yamakawa and G. Mat-
sumoto, editors, Methodologies for the conception, design and application
of intelligent systems, pages 688-691. World Scientific, Singapore, 1996.

[206] T. Yoshida, H. Mori, and H. Shigematsu. Analytic study of the tent map: band
structures, power spectra and critical behaviors. J. Stat. Phys.,31:279 308,
1983.

'.2071 Y. H. Yu, K. Kwak, and T. K. Lim. On-off intermittency in an experimental
synchronization process. Phys. Lett. A, 198:34-38, 1995.

133



LIST OF PUBLICATIONS OF THE AUTHOR

1. S. Sinha, "Influence of asymmetric initial configurations on the recall properties

of the Hopfield net" , J. IE(I), vol. 74, pp. 28 31, 1993.

2. S. Sinha, "The evolution of adaptability: the artificial life approach", Ind. J.

Phys., vol. 69 B, pp. 625-640,,1995.

3. S. Sinha, "Controlled transition from chaos to periodic oscillations in a neural

network model" , Physica -4., vol. 224, pp. 433-446,1996.

4. S. Sinha, "Chaos control in an oscillatory neural network model", J. IETE,

vol. 42, pp.205-273, 1996.

5. S. Sinha and S. Kar, "Competition among synchronizing chaotic systems: Im-

plications for neural computation", in T. Yamakawa and G. Matsumoto (eds.),

IVlethodologies for the conception, design and application of intelligent

systems, pp. 700-703, (World Scientific, Singapore) 1996.

6. S. Sinha, "Adaptive walks in fitness landscapes"., Ind. J. Theo. Phys.,vol.44,

pp. 63-73, 1996.

7. S. Sinha, "Geometry of chaos control in a one-dimensional map" , rn Proc. Int.

Conf. Dynamical Systems, Bangalore, pg.61, 1997.

8. S. Sinha and S. Biswas, "Associative memory for gray-level images" , rn Proc.

IEEE Int. Conf. Image Processing, Santa Barbara, Calif., pp. 871-873,

1997.

9. S. Sinha and B. K. Chakrabarti, "Deterministic stochastic resonance in a piece-

wise linear chaotic map" , Phys. Reu. E (to appear), 1998.

10. S. Sinha, "Chaotic dynamics in iterated map neural networks with piecewise

linear activation function" , Fundamenta Informaticae (to appear), 1998.

11. S. Sinha, "Chaos and synchronization in simple excitatory-inhibitory neural

network models", tn Proc. Int. Conf. Nonlinear Dynamics and Brain

Functioning, B angalore, pg. 54, 1998.



12.

13 .

S. Sinha, "Frustrated synchronization in competing drive-response cou-

pled chaotic systems", LANL e-print (http:ll xxx.lanl.govl absl chao-dyn/

9808017) ,1998 .

S. Sinha and J. Basak, "Response of an excitatory-inhibitory neural network

to external stimulation: An application to image segmentation", LANL e-print

(http:ll xxx.lanl.gov I absl cond-mat/), 1998.


