
Chapter 5

Collective Dynamics and
Synchronization in Small
Assemblies of Neural Pairs

The unique capabilities of the brain to perform cognitive tasks are an outcome of
the collective global behavior of its constituent neurons. This is the motivation for
investigating the dynamics of small networks of excitatory-inhibitory neural pairs,
which have been studied in isolation so far. Recent neurobiological studies have shown
that many cortical neurons respond to behavioral events with rapid modulations of
discharge correlations, lasting between - 10-2 - 10 seconds [193]. This supports the
notion that a neuron can intermittently participate in different computations by rapid
synchronization and desynchronization with neighboring neurons. The mechanism
of such dynamic correlations in the brain are as yet unknown.

Observation of transition between synchronized activity and incoherent activity in
the brain during sensory perception [53], hints at a connection with phase-locking
among coupled chaotic systems. Under certain conditions, such chaotic systems
can synchronize, either through coupling, or by being linked to a common signal.
However, the presence of multiple synchronizing interactions in a network of chaotic
elements shows a variety of novel phenomena. The numerical observations reported
in this chapter provide a glimpse of the possible range of collective behavior in small
assemblies of chaotic neural pairs. Section 1 reviews some techniques for synchro-
nizing chaotic systems. In Section 2 we briefly mention several interesting features
observed during the synchronization of two or three coupled neural pairs (both uni-
directional and bidirectional couplings have been considered). Section 3 introduces
the model (based on the Lorenz system of equations) used for studying competition
among synchronizing chaotic systems and includes a short analysis of the fixed points
and their stability. Section 4 contains the results of computer simulations of the
system. Finally, possible directions of future research and the relevance of this type
of research to the theory of neural computation are discussed.
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5.1 Synchronization of chaotic systems

The synchronization of chaotic systems is a difficult problem owing to their extremely
sensitive dependence on initial conditions. Any initial correlation present between
identical systems, starting from very close initial conditions, exponentially decrease to
zero with time. Thus, for all practical purposes, any initial synchronization between
the systems is bound to disappear rapidly. In recent times, however, some methods
of achieving synchronized behavior between chaotic systems have been proposed.
Pioneering work in this respect has been done by Pecora and Carroll [140], who used
the concept of a response system locking on to a driver system. So far, such studies
have been limited to driving a response system by a single driver system. However,
the knowledge gained from studying such simple systems may not be adequate to
give us an idea as to how systems consisting of multiple independent driver systems,
competing with each other to synchronize the same response system, will behave.
The Pecora-Carroll driving mechanism can be seen as the "strong-coupling" limit of
a general scheme of directionally- oriented couplings in a network of chaotic elements.

The synchronization of bidirectionally coupled chaotic systems is stable provided the
coupling strength is at least half the Lyapunov exponent of the system [55] (when the
coupling includes all the components of the system equally). One-way coupling (or,
driving one chaotic system by another) can also lead to synchronization, provided
certain conditions are satisfied [140], [141], [S1]. The drive-response method consist
of the following steps. First an n-dimensional autonomous system

F(* ) '

is divided into two parts, driving (x7) and responding (x,.):

dx

dt

dxa , \

E  
:  8 (xa ,x ' J ,

where,  x4 :  ( * t , , . . . , r^ ) ,  g  :  [ / t ( * ) , .  .  . ,  " f - ( * ) ] ,  x"  :  ( *^* t , .  .  . ,  r , , )  and
h - 

[ /-*t(*),. . . ,  "f , ,(*)].  A replica subsystem x| identical to x,. is then created and
driven with the x4 variables of the original system. Therefore, the replica subsystem
equations are,

dl, : h(xa, xi.).
dt

The responding subsystems x,. and xj. will synchronize only if 6x,. : lx, - xf l -+ 0.
According to Pecora and Carroll, this occurs if and only if the conditional Lyapunov
exponents of the x,. subsystem are all negative.

Drive-response synchronization has been realized in various electrical circuit experi-
ments. It has also been used in experiments of secure communication where a chaotic
masking signal is added to the transmitted signal. It is then recovered at the receiving
end by subtracting the chaotic signal regenerated by synchronization [42].
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Besides the Pecora-Carroll method, other synchronization procedures have also been
proposed. Of these, the Variable Control Feedback (VCF) method is of particular
interest, as it can be used for both control and synchronization of chaos [92]. In fact,
the Pecora-Carroll method turns out to be a special limiting case of this method.
VCF consists of adding a feedback term to a dynamical system to guide it into some
prescribed state. It #: F(x) be an n-dimensional dynamical system and x* be the
desired state to which the system has to be brought, then VCF involves modifying
the system dynamics to:

d,x

i :F(*)  
- ' \ (x-x-)

where .\ is the set of n, feedback multipliers. If x* be the output of a chaotic system
F'(*), then the system synchronizes with F(*). In the large-.\ limit, VCF reduces
to the Pecora-Carroll method. Specifically, the feedback parameters for the driving
subsystem variables, )a --+ m, while the remaining ,\s are set to zero.

5.2 Collective dynamics of neural assemblies

Synchronization among chaotic maps, with either unidirectional or bidirectional cou-
pling, have been investigated previously in [46,78, 189], while the effect of coupling
on the chaotic dynamics has been studied in [115, I52, 63,143]. In this section we
briefly mention some results of numerical investigations of collective dynamics of -l/
pairs of excitatory-inhibitory neural pairs (N:2,3), coupled to each other, either
unidirectionally or bidirectionally. The cases considered are shown schematically in
Fig.  5 .1.

CaseI :N-2
In this case, synchronization occurs for both unidirectional and bidirectional cou-
pling, when the magnitude of the coupling parameter is above a certain critical
threshold. An interesting feature observed is the intermittent occurrence of desyn-
chronization [56, 82] in an apparently synchronized situation, for a range of coupling
values. The arrangements we have investigated numerically are given by the following
set of equations:

z),+t : IF(r),),

z?,+r: lF(r?,+ \ lz),- 40,
for unidirectional coupling, and

z),+r: IF(r| ,+ \ lz l-  , : ,1),

z?,+t: IF(r?,+ ^14 - 4l),
for bidirectional coupling (JF indicates the dynamical system representing an excitatory-
inhibitory neural pair, with sigmoid activation function). Both systems show quali-
tatively similar behavior. In Fig. 5.2, we present the results of numerical simulation
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Figure 5.1: The coupling arrangements investigated for l/ : 2 ((u) unidirectional
and (b) bidirectional) and ly' : 3 neural pairs. In the latter case, two further cases
were considered: local coupling ((c) unidirectional and (d) bidirectional) and global
coupling ((e) unidirectional and (f) bidirectional).
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Figure 5.2: Intermittent synchronization for 2 bidirectionally coupled neural pairs
(z t ,zz)  wi th  coupl ing magni tude (a)  . \  :  0 .26 and (b)  )  :  0 .28 (a :  100.  b :25.  for
both the pairs).

of a bidirectionally coupled system, where the component neural pairs have the ac-
t ivation function parameters a:100,b :25. As can be seen clearly, the presence of
intermittent burst of desynchronization occurs as a function of the coupling param-
eter, I .

CaseI I :N-3
For l/ : 3, two coupling arrangements are possible for both unidirectional and
bidirectional coupling: local coupling, where nearest neighbors are coupled to each
other, and global coupling, where the elements are coupled in an all-to-all fashion.

In the case of unidirectional coupling, & certain type of local coupling arrangement
can produce a situation, referred to as "frustrated synchronization", that has been
analysed in detail later in this chapter. In the case of bidirectional coupling, we
observe a new phenomenon, referred to as mediated synchronization. The equations
governing the dynamics of the coupled system is given by:

z) ,+t : i lF( r ) ,+) ,21, ) ,

z?,+t: F(r?,+ ̂[4,+ zl,)),

z\.+t : IF ('1, + )'2'z") '

For the set of activation parameters o : 100, b - 25, we observe the following
feature over a range of values of the coupling parameter, .\: the neural pairs, z1
and z3 which have no direct connection between themselves synchronize, although z2
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Figure 5.3: \Iediated synchronization for 3 bidirectional. locally coupled neural pairs
(tr,rr,z3) with coupling magnitude ):0.12: (a) no synchronization betrveen 21 and
22., whrle, (b) ,r and 4 synchronize after - 500 iterations (a : 100. b :25 for all the
pairs).

synchronizes with neither (Fig. 5.3). So, the system z2 appears to be "mediating"
the synchronization interaction, although not taking part in it by itself.

For a global coupling arrangement, no new feature is observed for unidirectional
coupling (this arrangement is similar to that studied in [13] for continuous time
systems) - but for bidirectional coupling, governed by the set of equations:

z),*t: IF(r),+ Afz,'z,+ zl,)),

z?,+t: IF(r?"+ \ lz),+ r l ,)),

zl,+t : IF (r,', + \lz), + ,?,1),

the phenomenon of "frustrated synchronization" is observed. The phase space of the
entire coupled system is shown in Fig. 5.4. The time series plots in Fig 5.5 show that
none of the component systems synchronize. This is because the 3 systems, each
trying to synchronize the other, frustrate all attempts at collective synchronization.
( Note that the introduction of structural disorder in chaotic systems can also lead
to frustration [26].) To study this phenomenon in detail in the unidirectionally
coupled situation, we have considered the well-known Lorenz system of equations in
the following section.
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5.3 Competition among synchronizing Lorenz sys-
tems

The investigation of competition among synchronizing chaotic systems was carried
outus ingtheLorenzsystemof  equat ions [114] ,  [1S2] .  Thiswel l -knownparadigmof
chaos is defined by the following set of equations:

dn

dt
: o ( A - n ) ,

dy
_  6 f r

dt

dz -na
dt

- U - T Z ,

- bz,

- o  o  0
( ,  -  r r )  -1  -ny

At  r7  -b

(5  1 )

(5 .2 )

(5 3)

Io .+ /

where, o, r and b are real, positive parameters. There are three fixed points for this

system: Fr  :  (0 ,0 ,0) ,  Fz :  ( \FO-U,Vl i?_ D,r  -  1) ,  and F3 :  ( -  V l i?-D,
- 

lT(( 
- 1), r - 7). The local stabil i ty of the f ixed point (r1, Ur, z)is determined

by the eigenvalues of the Jacobian

T -

Evaluation of the matrix shows that for 0 < r ( 1, F1 is the only stable fixed
point. For r ) 1, F1 becomes unstable and the phase-space trajectory of the system
converges to  e i ther  F2 or  F3.  For  r  )  r " :  o(o +b+3) l@ -b-  1)  the system's
trajectory perpetually wanders along the extremely complicated structure of the
stable and unstable manifolds of the fixed points, exhibiting chaotic behavior.

For the present work the effect of two driving systems, designated as driving systems 1
(rr,Ar,z1) and 2 (*r,A2, z2), competing to synchrorize a responding system (nz,ys, zs)
was studied. The responding system was driven using the y variable. A competition
parameter a was defined to indicate the strength of the driving systems relative to
each other. The maximum value of a was normalized to unity. Therefore, the y
variable of the responding system was defined in terms of the two driving systems
A S :

y 3 :  a A t  - f  ( 1 -  a ) y 2 . ( b . b )

We consider first the case where the two driving systems have the same r-parameter
value, and then, the more general case, where the two r-values are different (r1 and
rz, sW). The o and Lparameter values are considered to be the same in all cases.

Case  I :  11  -  T2 :  r

It is obvious that for a : 1 the responding system synchronizes with driver system
1, whereas for a:0, it synchronizes with system 2. The attractor of the response
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F igu re  5 .6 :  The  response  sys tem a t t rac to r  f o r  (u )  o r :1 '0  and  (b )  a :0 '5

(rt :  12 : 28,o : I0,b : 813).

system, is identical to that of the conventional Lorenz system (Fig. 5.6 (a)). For

0 ( a ( 1, the responding system (r3,!s,23) has nine fixed points:

F1  :  (0 ,  0 ,  0 ) ,

F2 : (,,/i? - r), F? - ryr - 1),
F3 : e,l6(( - t,-,/i? - L),r - r),
rn : @yp@ - t),,"1fi1, - t), o2(r - 1)),

: ((1 - d'lr? - -),(1 - d!6v -r),(1 - a)2(r -7)),

: 7"r[-U1, - t. ,-"1fi@ ),az(r - 1)),
:  ( - (1 -  dvl i?- t , - (1 -  d, /b?-r) , (1 -  a)z(r-1)) ,
:  ( (2"  -  9 \FV 1,  (2o -  Dy lb? -  I ) , (2o -  1)2( r  -  1) ) ,

:  (-(2" -  D y[;-? - L),  -(2o - \  F? ),  (2o - 1) '?(r -  1)).

Note that the first three fixed points are those of the uncoupled Lorenz system. To

find out about the stability of these fixed points we need to calculate the eigenvalues

of the corresponding Jacobian, J'. The partially block-diagonal form.of the matrix

makes the calculation easy:

Fs

Fo

F7

Fg

Fe

1 l

J Os'r ] trz
0s ' :  J  0a 'z
ABJn

Jacobian (eqn. 4) of the unperturbed
matrix having m rows and n columns,

0  ao  0
0  a f r f ,  0

Lorenz system of equations,
and the other matrices are

(5 6)

where, J is the
0-"r, is a null
defined as,

6 (

(5 .7 )



Figure 5.7: The z-coordinate of fixed points of the response system for 0 ( a 1 t.

R
( 7  -  a )  o

( 1  -  a ) n h
(5  8 )

and,

J R :
- o  0

aah+ (1 -a )Un -b

0
0

0
0

(5.e)

Here /p refers to the fixed point of the kth Lorenz system.

For 0 < r < 1, the only stable fixed point is F1. For r ) 1, Fr loses its stability,
and there are four new stable fixed points: F2, Fr, Fa and Fe. For r ) r, : o(o -t

b + 3) I @ - b - 1), these fixed points lose their stability and the system shows only
chaotic behavior. The most interesting instance is that of a :0.5, where maximal
competit ion occurs. In this case, Fs - Fs: Fr, Fn: Fs and Fo: Fz (Fig. 5.7). The
attractor of the responding system is found to be stretched over its 3-dimensional
phase space showing an extremely tangled structure (Fig. 5.6 (b)). This is due to
the extremely complicated motion of the response system trajectory along the stable
and unstable manifolds of the fixed points Fr, Fz, F:, F+ and Fo. The coupling with
driver system 1 tries to force the response system into synchronization with it, but at
the same time, the coupling with driver system 2 desynchronizes the trajectory. The
synchronization is therefore 'frustrated' by the competition between the two driver
systems. The "frustrated" response system attractor reduces to the conventional
Lorenz attractor if. a--+ 0 or 1, when competition is absent.

The attractor structure is found to be quite robust. If we start from two different
initial conditions for the responding system, (*,A,") and (r', U',2'), say, then for
stable synchronization, the two respective trajectories should converge rapidly. How-
ever, whereas in the Pecora-Carroll case) convergence occurs to the standard Lotetz
attractor, in this case, both the trajectories converge to the "frustrated"attractor.



The stability of synchronization can be demonstrated analytically by linear stability
analysis of the error dynamics. Defining the dynamical error between two response
system trajectories (x and x') which have different initial conditions) as e : x - X/,
the error equations can be written as:

de*

E :  _oer t (5 .10)

(5 .11)

(5 .12)

€ y : 0 ,

de-

;  
:  (oa, + Q - a)y2)e* -  be,-

Here we have assumed that the equation parameters for the two systems are identical.
The error system of equations has an equilibrium point at e : (0, 0, 0), which
corresponds to perfect synchronization. The local stability of synchronization can
then be checked by looking at the eigenvalues of the Jacobian of the error equations:

Jn :
- o  0

aa t  +  ( 1  -  a ) yz  -b (5 .13)

The eigenvalues are -o and -b, which are the conditional Lyapunov exponents of the
response system. As both eigenvalues are negative, the synchronization is locally sta-
ble, and any difference in initial conditions rapidly goes to zero. Note that, this does
not prove the global stability of the synchronized state. However, simulations have
verified that even in the presence of large deviations in initial conditions, synchro-
nization with the "frustrated" trajectory is achieved. This indicates that, although
exact synchronization with the driver system cannot be achieved, the "frustrated"
system can still be used for secure communication through chaotic masking. This
has been established through simulations reported below.

Case IIz 11 f 12

When the value of the r-parameter of the two driving systems is not the same, the
fixed points are given by:
F1  :  ( 0 ,0 ,0 ) ,

r r :  @1p@,-t)  + (1 -  d\F?r-r) , "1p@ ) + (1 -  dF?-L),o2(, t -  1)  +
( I  -  a )2( r2 -  1 )  +  2a( I  -  

" ) t l  ? ,  -  1 ) ( r r -  1 ) ) ,

Fr :  (-"v6?r-L) -  (1 -  d\F?r-r) ,-o1f i1,  -g -  (1 -  d6?r- L),az(rr  -

1) + (1 -  o) ' (rr-  1) + 2a(7 -  dt fu,  -  1)(rr-  1)) ,
rn: @1fre, - t),"1pe, - t),or(r, - 1)),
Fs :  ( (1 -  

" )y6?- 1) ,  (1 -  d\F?r-  D,  (1 -  o)r( r r -  1)) ,
F6 : (-",16?t - L),-"{Wt - t),o'! .  ),
FT :  ( - (1  -  a )1 f  b ( r2 -  1 ) , - (1  -  a ) r f  U( r r -  1 ) ,  (1  -  o ) ' ( r r -  1 ) ) ,

Fs : @6?,-\-(1 - dylbvr- 1),"r f i1,- t1-(1- o\For-t l ,az(rt-1) +
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Fig. 5.8 shows the (r1,r2)-parameter space. The stable fixed points at different

regions are indicated in the diagram. The dotted line corresponds to the special case

rr: 12 which has been considered above. Note that, whereas in the general case all

the fixed points are stable in some region or other, in the special case of rt : 12, folur

of the fixed points, u'i2., F+, Fs, F6 and F7, are always unstable. When one of the

r-values go over to the chaotic regime, while the other r-value remains fairly below it,

asymptotic synchronization with the chaotic trajectory is observed [106]. The time

required to ultimately synchrorize with the chaotic attractor is a function of both

the r-parameter values. The synchronization is phase- synchronization rather than

state- synchronization, as the response system chaotic attractor is a scaled replica of

the driver system attractor. The scaling factor is a for synchronization with driving

system 1, and (1 - 
"), 

for driving system 2. When both the r-values are in the chaotic

regime, the "frustrated synchronization" situation occurs.

5.4 Simulation results

For conducting simulations, the parameter values chosen w€r€ 11 - T2 :28, o : I0

and b : 813. The trace of the Jacobian (which is equal to the sum of the Lya-

punov exponents) for the total system, including the driver and response systems, is

space snowlng points of the re-

1 ) ( r 2  -  1 ) ) ,

b(, -
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-40.0. So the overall system is diffusive and possesses an attractor. The competition
parameter a was varied in the interval [0,1]. The differential equations were nu-
merically solved using the fourth-order Runge-Kutta method with step-size :0.025.

The phase-space trajectory of the responding system (*t,yt,z3) was observed with
different values of a from t:0 to f :100. At the l imit a:0 (or 1) the responding
system trajectory is identical to that of a unperturbed Lorenz system (Fig. 5.6 (a)).
However, as o ---) 0.5 (where maximal competition occurs), the trajectory deviates
more and more from the standard Loretz form. At a : 0.5, the trajectory moves
in a complicated path around the fixed points F1, F2 and F3 (note that, at a : 0.5,
Fs: Fs: Fr (Fig. 5.6 (b)). I t  appears that for a:0.5, the z-variable t ime-series is
much more correlated. This becomes clearer on taking a Fourier transform of the
data. The power spectral density of the frustrated attractor time-series is low in the
high-frequency end compared to the unperturbed system time-series.

The Lyapunov exponents were calculated using Gram-Schmidt technique [160] to
create an orthonormal basis every 0.5 seconds of simulation time (this time interval
being roughly half the "period" of the Lorenz system) and then averaging over 100
iterations. As expected, of the eight exponents, six correspond to those for the two
unperturbed driving Lorenz systems (0.84, 0, -14.51). The remaining two exponents
are the conditional Lyapunov exponents of the responding system : -813 and -10.

This implies the robustness of the "frustrated" attractor - as any deviation from the
attractor rapidly diminishes.

To study the degree ofsynchronization, z-coordinates ofthe responding system state
(23)were plotted against the z-coordinates of each of the driver system states (rt, ,r),
for different values of a. If the two are synchronized, the plot gives a straight line.
This suggests that the linear correlation coefficients, r, between the driver and re-
sponse system time series, can be used to obtain a quantitative measure of synchro-
nization. The linear correlation coefficient between two time series data r(t) and
y ( t ) ( t  -  1 ,  .  .  . , n ) , i s  g i ven  by

t l i ' : r (r( i , ) -n)fu@-a)

where z and or are the mean and standard deviation respectively, for the time series
r(t). A measure of desynchronization is defined as

6 : 1 - T r z , z s . (5.14)

At a:0, where there is exact synchronization between driver system 2 and the re-
sponse system, 5 : 0. This is a particularly robust measure) as 6 -+ 0 for both state-
and phase- synchronization. The variation of 6 with a is shown in a logarithmic plot
(Fig. 5.9). The linear nature of the curve over at least 3 orders of magnitude as
a > 0, indicates the presence of a power-law scaling relation of the form:

6 - ao,,
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Figure 5.9: Log-scale plot of desynchronization (5) for 0 ( a ( 1. The porver-law

scaling relation (with characteristic exponent, 6 - 2.0) is indicated by the solid line

fitted to the simulation data.

where the scaling exponent, g - 2.0. The scaling exponent was also obtained for r:

50 and 70. In both cases, 0 - 2.0 within simulation error. The scaling seems to be

related to similar scaling phenomena due to intermittency induced by noise (in this

case, the non-synchronized chaotic input) for motion on the invariant synchronization
manifold [146, 136], that have been observed both theoretically [12,83, L47,45] and

experimentally [207].

Another interesting feature studied was the fractal correlation dimension of the frus-

trated attractor (Fig. 5.10), calculated using the FD3 (ver. 0.3) software [154].
For the unperturbed Lorenz system, this is very close to 2, as the attractor is al-

most 2-dimensional. As a increases from 0 to 0.5, the attractor deviates from this

two-dimensional shape, which can be quantitatively measured by the correlation di-

mension. As a --+ 0.5, the attractor structure stretches out more and more over the

three-dimensional space. This type of enhanced diffusion in phase space seems to be

a generic feature of frustration in chaotic systems, and has been reported previously

in the case of Coupled Map Lattices [20].

The simulations also showed the robustness of the "frustrated" attractor. Starting
from different initial conditions, the response system trajectory was found to converge

to the same attractor structure. This indicates that even in the absence of exact

synchronization with any of the driver systems, the response system trajectory can be

used as a chaotic masking signal for secure communication [42]. This was verified by

adding a small amplitude periodic signal (".g., u sine wave of frequenc! u; : I1200)
to the response system y-variable time series. The resultant time series appears to be

devoid of any periodic component (Fig. 5.11, top). It is then used to drive another
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Lorenz system, and the z-variable time series of the two systems are subtracted from
each other to retrieve the original signal (Fig. 5.11, bottom). The modulation of
the competition parameter,a, by a binary signal for chaotic switching, is another
possibility of using the competitive scheme for secure communication.

5.5 Discussion

The competitive scheme described here for y-variable coupling was also implemented
for n- and z-coupling of Lorenz systems. In the former, similar generalized attractor
structure was observed, while in the latter, where the Pecora-Carroll synchronization
does not work, no such structure could be observed. The work done here on coupled
Lorenz systems can be extended to other systems defined by autonomous set of
differential equations as well as discrete maps. However, it might be interesting to
consider the result of competition in synchronizing non-autonomous systems (e.g.,
the Duffing oscillator). As such systems already have a forcing term present, which
brings about the onset of chaos, the introduction of additional forcing terms can lead
to qualitatively new behavior.

Competitive synchronization in extended systems might also lead to interesting phe-
nomena. Lattices of (globally or diffusively) coupled chaotic elements, where each
element can be used both to drive other elements, as well as respond to driving sig-
nals from yet another set of elements, and hence by a series of feedbacks drive its
own driving systems, will serve to illustrate interactions between multiple compet-
ing synchronizing feedback loops. The motivation for such a study is that, in the
human brain, synchronization of activity among different neurons appear to have
an important functional role in the proper performance of perceptual tasks. It is to
be noted that, single neurons are capable of chaotic behavior. As the brain is com-
posed of densely connected networks of neurons, there is bound to be competitive
synchronizing interactions between neural assemblies [193, 176]. A dynamic competi-
tion parameter, which causes synchronization-desynchronization transitions between
various neural sub-assemblies, is a possible mechanism for information processing in
biological systems. The resultant dynamics will be radically different from the one
we are led to expect by observing the dynamics of single neurons or small groups of
neurons.

The above work describes the simplest competitive scenario which can show a qual-
itatively different dynamics from that in the non-competitive situation. It is at
present not known how the nature of synchronization and the attractor structure
of the responding system might be altered by increasing the number of competing
driver systems. In the brain, where each neuron is connected to - 104 other neu-
rons, the competitive situation is bound to be far more complicated. The manner in
which such an extremely competitive synchronizatton scenario might influence the
way in which neural networks perform computations and process information is a
very interesting problem for the future.
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