
Chapter 4

Chaos Control in Simple
Excitatory-Inhibitory Neural
Network Models

Neurobiological studies have indicated that rapid transitions between chaotic and
relatively more ordered states may be the key towards understanding how the brain
performs cognitive tasks. This immediately suggests that methods of controlling
chaos may be used to study similar phenomena in neural network models. In the
work described in this chapter, control of chaotic behavior is investigated in chaotic
neural network models. On imposition of control, transition of the network behavior
from chaos to periodicity is observed. This has implications for both the explanation
of observed neurobiological phenomena (e.g., olfactory hallucinations during epileptic
seizures) as well as a more dynamic interpretation of associative recall performed by
neural network models.

The next section reviews some existing techniques of chaos control which can drive
a system from chaotic to ordered behavior. In Section 2, we analyze the physical
mechanism of control in a chaotic neural pair, achieved through, either, a feedback
to a system variable, or, through periodic forcing. Section 3 reports the results of
applying control to a chaotic neural network comprising three pairs of excitatory
and inhibitory neurons, while, in Section 4, the relevance of this type of research to
explaining neurobiological phenomena is discussed. Finally, some observations on the
possible applications of chaos control in neural computation are briefly mentioned.

4.L Chaos control

One of the distinguishing features of chaotic attractors is that they have an infinite
number of periodic attractors embedded within them. If the system state exists at
any time on a region belonging to one of the periodic attractors then it will remain
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within it. However, as the attractors are unstable, when perturbed by noise, the
system diverges away from the periodic orbit at an exponential rate. In a chaotic
attractor, the system state may be, at any given time, infinitesimally close to any
one of the in-finite periodic attractors but due to the highly unstable nature of the
periodic orbits, the periodicity is never manifested over a measurable period of time.

Ott, Grebogi and Yorke have used this feature of chaotic attractors to consrrucr a
general method of controlling chaos, i.e. to convert the chaotic behavior of a sys-
tem to a time-periodic one [135, 161]. Their method (referred to as OGy method
henceforth) achieves this control by making small, carefully chosen time-dependent
perturbations of one of the parameters of the system. To obtain a periodic orbit,
a local map around the desired attractor is constructed by the method of delay-
coordinate embedding. In this method, the experimentally obtained time-series of a
system is used to construct a (nf 1)-dimensional (say) delay-coordinate vector, whose
time-evolution can be plotted to give a 3-dimensional projection of the trajectory.
It has been mathematically demonstrated that such a projection is a good approx-
imation of the dynamical attractor of the relevant system in (n * 1)-dimensional
space [138], [27]. The OGY control method relies upon the identification of saddle
instabilities, i.e., unstable periodic points located on a surface having both stable
and unstable directions. The system approaches the periodic point along a stable
direction and diverges away from it along an unstable one. When the chaotic system
state is in the neighborhood of the desired attractor, a perturbation is applied to
a system parameter such that on the next iteration the system state falls on the
stable direction. The state will then move towards the attractor in successive it-
erations. Using this principle, many physical systems exhibiting chaotic behavior
has been subjected to control. However, one d.rawback of this method is that only
Iow-period orbits can be stabilized, since, because of the exponential error magnifi-
cation in chaotic systems, high-period stable orbits are extremely difficult to achieve
by making only one correction in the long period. The OGY method has been used
to control chaos in a biological neural network prepared from a hippocampal slice
of a rat brain [155]. Using precisely timed electrical stimulation of the brain slice,
the system was perturbed such that a trajectory coincid.ed with a stable direction in
the neighborhood of a periodic attractor. Thereafter the point moved towards the
attractor with successive iterations and the resulting trajectories became periodic.
In a similar way, anticontrol was achieved by perturbing a stable orbit, so that the
next iterate falls close to the unstable direction, with a corresponding transition from
periodic to chaotic behavior.

An alternative method of controlling chaos, called "occasional proportional feedback',
(OPF), has been proposed by Hunt [93]. This allows stabilization of longer orbits
than that possible through the OGY method. As higher period orbits visit most
regions of the attractor, which correspond to different physical states of the system,
it is desirable to have high-period orbits if one wishes to sample as many of the
states as possible. In the OPF method, feedback is used to modulate the system
parameter. The deviations of a chaotic variable within a specified window, centered
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about a specified value of a chosen system variable, are fed back to the system. By
varying the control parameters, different periodic orbits are stabilized. A theoretical
framework for this control mechanism has been sought to be developed by Carr and
Schwartz [30].

Both the methods mentioned above apply the control signal to the system parameter.
Feedback to the system variable, has also been applied to control chaotic systems with
success. One such method [120] is based on the application of a periodic proportional
feedback to the system variable, such that, every p time steps (say), the system is
modified by means of a proportional feedback. As a result, an unstable periodic
orbit, of period equal to a multiple of p is found to be stabilized. This method has
been used to control the chaotic behavior of small, discrete neural networks [179],
where the control is applied to one of the neurons, the others being free of direct
control.

4.2 Controlling chaos in a neural pair

In this section we demonstrate two different ways of controlling the discrete-time
chaotic dynamics of an excitatory-inhibitory neural pair. The first method is based
on the application of proportional feedback to the system variable (instead of the
system parameter, as in the OPF method) described above. The second method
involves subjecting the neural pair to an external periodic stimulus.

4.2.L System variable feedback method

To observe the effect of applying occasional proportional feedback to the system vari-
able, let us consider the case of a neural pair whose dynamics is governed by piecewise
linear activation functions. As already mentioned in Chapter 2, the behavior of a
neural pair, with function parameterS, o : 4 and b : 2, is identical to that of the
tttent" map:

zn t t  :  2z r ,  f o r  01zu<0 .5 ,
:  2(7 -  2 , , ) , ,  for  0 .5 < 2, , .1L,

with the difference being that the phase space of the neural system is confined to
the interval [0, 0.5], while the tent map is defined in the unit interval [0, 1]. However,
this distinction can be removed by suitable rescaling. We shall therefore focus on the
tent map as the system to which the proposed control mechanism is applied.

The tent map) as defined above, is chaotic over the entire unit interval. The Lya-
punov exponent of the system is .\ : log"2 - 0.693, and the expansion of small
perturbations among nearby trajectories is uniform throughout the interval. The
results obtained for this specific case, are easily generalizable to maps with a glob-
ally uniform stretching rate, and, with slight modifications, to piecewise uniform
stretching rates.

(4 1)
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zx- Lz* z* zx+ A z*

Figure 4.1: The input-output relation of the control signal, 62, with the control

parameters, z* and Az*. The feedback magnitude, a, gives the slope of the function.

If 2,,11 : IF(2,) represent the system to be controlled (in the present case, -F is given

by Eqn. (4.1)), then the on applying control, we have the modified system:

z*tt :  IF(r.) * 6zu, (4 2)

where, 62,,, represents the control signal. For the proposed control method, the

control signal is obtained by

62,, -- e.f 4r*Qr - IF(2,,)).

Here, z* is the system state which is desired to be stabilized, a is a parameter

governing the magnitude of feedback and f is a function, defined as,

Fr({ : €, if l€l < tr,
: 0, otherwise.

As is evident from the form of F,the control signal is generated only on occasions

when the system variable z € IF-t(r. tAz-) (see Fig. 4.1).

Let us now see the effect of the above control mechanism on the tent map. If 2,,:

IF-r77. * Lz),, where L,z 1Az*, then, on the next iteration, the system goes to

zntr :  z*  I  Lz *  a(z*  -  z .  -  L 'z) .

Now for the tent map, -F-1(r): f  ,  so that,

L,z :22r, _ zn .

Therefore, one can write the resultant system dynamics, in the presence of control,

AS

(4.3)

zn*r :22r" - 2Qzr, 1- {tz' (4.4)
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Figure 4.2:  The ef fect  o f  feedback contro l  ( r * . :0 .4,  Lzr :0 .02 and a:  1)  to  the

system variable of the tent map (inset), F, is shown in a magnified view. The regions
F-t(rr)IL,z* have a slope of zero, the rest of the map remaining unchanged.

The above expression implies that, the slope of the map, in the region F-'(r '* Az-).

has been modified to
yp :2(r  _ a),

aZr"

on the application of control. This is shown, for zr : 0.4, L.z* : 0.02 and (t : 1,

in Fig. 4.2. Note that, the slope of the map is the system parameter governing

the nature of the dynamics. This implies that the effect of feedback to the system

variable is the same as local parametric perturbation around the desired region of

the phase space to be controlled.

We shall now investigate the conditions under which a period-p cycle is stabilized by

the control method. Let, the p-th iterate, Fo, be the lowest order iterate of the map,
to have a fixed point in the region IF-17r* IL,z). The stability of the fixed point is
decided by the magnitude of its slope, m. In the case of the tent map,

0.40 .2

m : 2 P ( l  -  a ) . (4 5)

(4.6)

The p-th order cycle is stable only if l*l < 1, so that, by Eqn. (4.5), the critical
value of a at which the cvcle iust becomes stable is:

1o.:1- f r

For example, a fixed point can be stabilized for o ) 0.5, while a stable 2-cycle is
obtained only for a> 0.75, and similarly for higher order periodic cycles.

The time required for the system to converge to the stable state, on application
of the control mechanism, is dependent upon Az*. The average time required for



convergence can be obtained analytically in the case of the tent map. The extent of
the region in which control is activated rs 2L,z*. As the map is defined in the unit
interval, the probability that a trajectory is in this region is also 2Az-. If the system
is in another region, the probability that it enters the control region is 2A,z* (L-2L'z').
Proceeding in this manner, the probability for the trajectory to enter the control
region after n iterations, is given by

P(n) : 2L'2. (7 - 2L'zr)'" '

Therefore, the average time required for convergence is

1 n ): Ef-onP(n) : 2LzrELo"G - 2L,z*)"

This is evaluated as

.-n):W,

\ + . r  )

(4 8)

(4 e)

which, comes out to be - 49, for Az* : 0.01. An example of a controlled transi-
tion from chaos to a period-2 cycle is shown in Fig. 4.3, for the control parameters:

z* :0.4,  L .z*  :0 .01 and a:  1 .  The contro l  mechanism is  turned on at  n :50 ( in-

dicated by an arrow "a") and the periodic cycle is stabilized quite rapidly (indicated
by an arrow "b"). The bottom panel of Fig 4.3 shows the magnitude of the control
signal, 62.

Since the control perturbation, 62, is a function of the neuron state, 2,,, arrd a de-

sired system state, z*, the control method can be implemented as a network of

excitatory-inhibitory neural pairs with suitable connection weights and activation
function parameters ( Fig. 4.4). The combination of a chaotic neural pair with a

controlling neural system provides a neuromodule for stabilizing various periodic or-
bits, as suggested in [136]. Note that, an entire periodic sequence can be stabilized
if only one of its members is known. Therefore, for a system with uniform stretching

rate (e.g., the tent map), there is no necessity for obtaining a time-series to generate

a control signal - a single stationary input is sufficient. The method has the further
advantage of being extremely simple to implement, as compared to, say, the OGY
method, which involves intensive calculations.

4.2.2 External periodic stimulation

Periodic cycles can also be stabilized by applying a periodic external input. This
had been observed in the case of chaotic nonlinear oscillators evolving in continuous
time [25]. Similar phenomena has been observed in our neural model.

For an excitatory-inhibitory neural pair, with activation functions of sigmoid nature,
the effect of applying a periodic signal has been observed. As already mentioned in
Chapter 3, for low-frequency signals, nonlinear resonance occurs. However, if the
signal is of higher frequency, periodic orbits of various orders are stabilized. The
reason for this phenomena is as follows.
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a b

Figure 4.3: (Time series of the tent map subjected to control (top) and the magnitude
of the control signal (bottom). The arrows a and b indicate the switching on of the

control mechanism and the onset of controlled periodic cycles, respectiveiy.

Figure 4.4: A biologically plausible mechanism for implementing the feedback control
mechanism demonstrated for the tent map.
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Figure 4.5: The map representing the dynamics of the excitatory-inhibitory neural
pair (a - 50, b : 25) governed by sigmoid activation function subjected to control
by a periodic external input of peak amplitude 6 : 0.05. The broken curve indicates
the unperturbed map (4), while the solid curve indicates the shifted map (F2) due
to the periodic input.

Let the unperturbed map be chaotic in nature. On applying a periodic signal, the
map is translated periodically, so that the slope at different points of the map is a
function of time. Consider the case of a period-2 signal, which switches alternately
between 0 and 5 (Fig. 4.5). The trajectory from the critical point of the unperturbed
map, Fr (indicated by broken lines), iterates to the tail portion of the shifted map,
F2 (indicated by solid lines). Note that the slope, at this region, of the perturbed
map, is much less than that of the original map. The stability of a period-2 cycle (21,
z2), is decided by the slope of the fixed point of the composite map, Ft * tr'2, given
bv: 

^:  o! ' l ' : ' '  X * l : ' " '
d,z dz

Now, l#1,:,, << 1+ l^l < 1 (for sufficiently large 5), indicating the stabilization of
the period-2 cycIe.

4.3 Chaotic neural network model

We shall now consider a network comprising a larger number of elements for the
purpose of controlling unstable periodic cycles. The present work has been done
on an excitatory-inhibitory neural network model, which is a discrete-time version
of a model proposed by Hayashi [80]. The system consists of N excitatory and N
inhibitory elements, denoted by *n and g;, respectively (Fig. 4.6). The cells update
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Hebbian synaptic connections W ii

r r r r r  i nh ib i t o r y  connec t i on - excitatoryconnection

Figure 4.6: The oscillatory neural network model. Excitatory and inhibitory cells

are labeled as u and y, respectively. W;l represents the connection weights betrveen

the excitatory cells. K"i is the strength of inhibitory connection from y to x and K;"

is the strength of excitatory connection from x to y.

their states in the (n + 1)th iteration, according to the following transformations:

IY

r;(n+-I) : G(t Wi1 r/n) - Ku a|n) * In(r))
j - 1

(4.10)

and,

vi@ -r 7) : G(K,n r;(n) * I ;(w + 5)) (4'11)

where, 1(o) is an external periodic input or bias, 6 is a phase difference between the

inputs to r; and li and, the function G is defined as,

G(r) : ? arctan(zlo) (4.12)

a being the slope of the function. This parameter is analogous to 'temperature' in a

physical system.

Thus, while excitatory cells are all connected to each other, inhibitory cells are con-

nected only to the corresponding excitatory cells - Krr being the weightage of the

excitatory connection from z; to ga and KB7 being the inhibitory connection weigh-

tage from yito n;. It is evident that r; and livar! between *1 and -1. The activation

values of the excitatory cells at time f , rt(t), is taken as the output of the network

at that instant of time.



The synaptic connection weight"WU between the excitatory cells, fr;, d,ta evaluated

by a modification of the standard Hebb rule,

11y ' i i : * f  € ig+a, ,  (4  13)

where {f is the ith component of the pth pattern vector being stored in the network

and fi7 is the Kronecker delta function.

It is easily seen that the pair of first-order difference equations ( -5) is equivalent to

the second-order difference equation:

N

n; (n - rL ) :  G( t  Wi1  n /n )  -  KuG(K, " *n(n-7)  +  I ; (w+6) )  +  Io ( r ) )  (4 .74)
j : l

which resembles a Hopfield-like model with delay-dynamics.

4.3.L Stability analysis

The stability of the fixed points of a single excitatory-inhibitory pair is investigated

in this section. Let z* denote a fixed point of the pair of evolution equations fot ni

and y;. The Jacobian in the neighborhood of the fixed point in the absence of any

external input is given by

G' (r)1":,"Wu G' (r)1,:, 'Knr
G'(z)1,:,.KtB o

where G'(r) is the derivative of G(z) w.r.t. z.

The eigenvalues are given by the solution of the equation

De t  I  J  - . \ I  |  :  0

where I is the identity matrix. This equation can be reduced to

sz-ThJ)*DetJ :o

Thus,
TrJ  *

(4.18)

For (Tr J)' - 4Det J > 0 the solutions eventually converges to the fixed point, which

i s thuss tab le .Eva lua t i ngJ ,T rJ :G ' ( z ) l r : , rWnnandDe t I : (G ' ( z ) | , : u ) 'K rnKu '
As G'(z) : ;ffiv, the eigenvalues are given by,

J - (4 .15)

(4.1e)

(4 .16)

(4.17)

2a
Ir,z : --.:x (W;r * tlw| - 4 Ku Krn)

n  (o2  *  z r ' )

According to Eqn. (4.13), W,i,r:2. Therefore, the condition for stability of the fixed

point rs Ks K1B
second-order difference equation become unstable giving rise to periodic orbits.

(Tr J)2



4.3.2 Simulation results

For the present work, a network with N : 3 was used for carrying out computer
simulations. The number of cells was kept low for ease of graphical analysis. The
pattern vectors chosen for storage in the network were :

€ ' : ( 111 ) ,€ r : ( 1  - 1  - 1 ) , € t : ( - 1  - 1  1 )

The memory patterns are, therefore, vertices of a cube, -1 < n; I I (i:1,2,3).
After evaluating the weight matrix, the network was made to evolve from a randomly
chosen initial value. The initial states were taken as r;(0) : /a and gl(0) : 0. As
pointed out above the condition for oscillations in a single excitatory-inhibitory pair
ts Ks K1B
together through connection strengths - O (#). If these three oscillators have
independent periods of oscillations then, according to the results of Li and Yorke

[110], the system is capable of chaotic behavior.

The simulation was carried out for the following set of parameters: KB1 :2.0, Kra
: 2.0 and a : 0.1. An external sinusoidal input which completed one period every
300 iterations of the network with 5: 0 was used to stimulate the network. The
system showed chaotic activity when the input pattern vector was very different from
any of the stored pattern vectors. The S-dimensional plot of the trajectory of the
network state in state space is shown in Fig. 4.7, while Fig. 4.8 shows the variation
of the average activation of the excitatory cells with iteration number along with the
corresponding logarithmic spectral density.

Another performance parameter to be noted is the overlap of the output of the
network at a given time with each of the stored patterns. This is defined for the pth
pattern vector at the nth iteration as

m'(n)  :
"i(") €i (4.20)

In Fig. 4.9 the overlap values are plotted against the number of iterations, for each
of the three {t'.

This chaotic system was then subjected to control by modulating the amplitude of
the external periodic input. The resulting system, starting from the same initial
conditions and network parameters as in the previous chaotic case, showed a time-
series repeating every 15 iterations, after the initial transients had died away. The
trajectory of the system state over time in Fig. 4.10 shows a simple periodic orbit.
Regular periodic behavior is clearly manifested in the plot of the average excitatory
cell activation and the corresponding logarithmic spectral density curve in Fig. 4.11.

The overlap vs. iterations diag.u- ,.r Fig. 4.12 shows that the network periodically
comes close to each of the three stored patterns. Thus, on imposing control, the
system state exhibits periodicity quite clearly.

1 N' \ -

N?
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Figure 4.7: Trajectory of the network output in the chaotic state (/(.; : 2.0,

Ki" : 2.0). The activation values for the cells z(1) , *(2) and z(3) are plotted along

the three axes. The circles represent the locations of the stored patterns and the plus

sign indicate the location of the input pattern.
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Figure 4.8: Temporal evolution of the average activation value of the excitatory cells
in the chaotic state and the corresponding logarithmic spectral density.
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Figure 4.9: Temporal evolution of the overlap of the network output rvith the stored
patterns in the chaotic state.

4.4 Neurobiological implications

The modeling of neurobiological chaos and its subsequent control to produce periodic
behavior, points out several possible avenues for research aimed at understanding
how the brain works. As Freeman has already pointed out [177], chaos is omnipresent
in the brain - demonstrably so, in the somatosensory and the olfactory cortices.
It has been suggested that the quiescent state of the brain is chaos, while during
perception, i.e. when attention is focused on any sensory stimuli, brain activity
becomes more periodic. From this perspective, the periodic orbits observed in the
controlled state of the network model can be interpreted as specific memories. If the
different spatio-temporal patterns stored in memory are identified with the infinite
number of unstable periodic attractors that are embedded in the chaotic attractor,
then the transition from quiescence to attention can be interpreted as the controlling
of chaos to give rise to periodic behavior, culminating in the identification of the
sensory stimulus that has been received. This control, of course, is not imposed by
any external agency, but is an emergent property of the brain.

This identification is also indirectly supported by the clinical observations of hal-
lucinations that are prevalent during sensory epileptic seizures [2]. Complex visual
hallucinations are usually due to an epileptic focus in the posterior part of the tem-
poral lobe, near its junction with the occipital lobe. Often the hallucinatory visual
images are distorted, being too small or too large or unnaturally arranged. More

( o



1

*o

-1
1

Figure 4.10: Trajectory of the network output in the controlled state for the same
set of network parameters and input pattern as in Fig. 7.
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Figure 4.11: Temporal evolution of the average activation value of the excitatory
cells in the controlled state and the corresponding logarithmic spectrai density.
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Figure 4.12: Temporal evolution of the overlap of the network output with the stored
patterns in the controlled state.



striking is the case of olfactory hallucinations, that are often associated with disease
of the inferior and medial parts of the temporal lobe, usually in the region of the
hippocampal convolution. Commonly, the hallucinatory smell is thought by the sub-
jects to come from some place in the environment and is described as disagreeable
or foul, although otherwise unidentifiable. This can be explained in terms of the
proposed picture of brain function by noting that during epilepsy, undesired control
of the chaotic activity of the brain occurs as a result of the highly synchronized elec-
trical stimulation of large parts of the brain. The stabilizing of an undesired periodic
attractor results in the erroneous recognition of a sensory stimuli even when such a
stimuli is absent from the immediate environment of the epileptic subject.

4.5 Discussron

In this investigation, we have confined our attention to small networks for convenience
of analysis. The extension of the control methods to the situation of spatiotemporally
extended systems [92] is a challenging task for the future.

The traditional neural network paradigm has been so far dominated by dynamics
governed by a multitude of fixed point attractors [8]. Each such attractor is iden-
tified with a specific pattern which is desired to be classified appropriately and/or
recalled associatively. But limitations of neural networks designed according to this
prescription, as well as, recent neurobiological research, is now forcing this "fixed-
pointil approach to be replaced by a more dynamic interpretation of how cognitive
tasks may actually be performed in the brain.

The use of chaos control can improve the performance of neural network models
for processing information. The possibility of embedding an enormous amount of

dynamic patterns ( 
".g., 

moving images, pieces of music, etc.) in a chaotic neural net-
work and their systematic recognition will widen the scope of applications of neuro-
computers. Rapid switching between various unstable periodic cycles, without large
changes in the system dynamics, can be of use in tasks such as storing information
and pattern classification. Temporal sequences can be associated with the unstable
periodic attractors by suitable learning rules and then recalled on presentation of
suitable stimulus as input to the network. The convergence to the stored patterns
will be extremely rapid owing to the chaotic dynamics governing the network.

Although control of chaos (by the OGY method) has been demonstrated in the brain

[155], it is still not clear whether a similar process is actually used in nature. In
this situation, the investigation of different control processes in simple, biologically
plausible neural models, can give us an insight on the possible functional role of such
phenomena in the actual neurobiological situation.
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