
Chapter 3

Nonlinear Resonance in a Chaotic
Neural Pair

The autonomous behavior of the excitatory-inhibitory neural pair was investigated in
the previous chapter. We shall now look at the response of such a system to periodic
stimulus. Our observations indicate the occurrence of a nonlinear resonance phe-
nomenon in such a situation. To simplify the theoretical analysis we have investigated
an anti-symmetric, piecewise linear map, that shows a transition from symmetry-
broken to symmetric chaos on increasing a system parameter. In the latter state,
the chaotic trajectory switches between the two formerly disjoint attractors, driven
by the map's inherent dynamics. This chaotic switching rate is found to 'resonate'

with the frequency of an externally applied periodic perturbation (multiplicative or
additive). By periodically modulating the parameter at a specific frequency u we
observe the existence of resonance where the response of the systetr (in terms of the
residence-time distribution) is maximum. This is a clear indication that the reso-
nance we have observed is a deterministic analogue of the phenomenon of Stochastic
Resonance (SR) [59] - with thermal noise being replaced by one-dimensional chaos.
The insights gained from the simple model is then used to study similar resonance
behavior in an excitatory-inhibitory neural pair with anti-symmetric, piecewise linear
activation functions.

In Section 1, we briefly review the previous investigations of stochastic resonance
in chaotic systems. In Section 2, the model for studying deterministic SR is intro-
duced and the experimental observation of resonance in computer simulations for
parametric perturbation is described. In the following section, a theoretical analysis
is undertaken of these observations. Additive perturbations also give rise to similar
resonance and is described in Section 4. In Section 5, we consider an excitatory-
inhibitory neural pair, for which experimental and theoretical results are given. We
conclude with a discussion on the implication of such resonance phenomena for biolog-
ical systems. We also mention the relation of the results of the present investigation
with the process of deterministic diffusive and resonance in the kinetic Ising model.
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3.1- Stochastic resonance in chaotic systems

"Stochastic Resonance" is a recently observed nonlinear phenomena in noisy systems,
where the noise helps in amplifying a sub threshold signal (which would have been
otherwise undetected) when the signal frequency is close to a critical value [19]. This
occurs because of noise-induced hopping between multiple stable states of a system,
Iocking on to an externally imposed periodic signal. The characteristic signature of
SR is the non-monotonic nature of the Signal-to-Noise Ratio (SNR) as a function
of the external noise intensity. A theoretical understanding of this phenomena in
bistable systems, subject to both periodic and random forcing, has been obtained
based on the rate equation approach [125]. As the output of a chaotic process is
indistinguishable from that of a noisy system, the question of whether a similar
process occtlrs in the former case has long been debated. In fact, Benzi et aI [I9)
indicated that the Lorenz system of equations) a well-known paradigm of chaotic
behavior might be showing SR. Later studies [12S], [11] in both discrete-time and
continuous-time systems seemed to support this view. However, it is difficult to
guarantee that the response behavior is due to "resonance" and not due to "forcingt'.
In the latter case, the periodic perturbation is of so large an amplitude, that the
system is forced to follow the driving frequency of the periodic forcing. The ambiguity
is partly because the SNR is a monotonically decreasing function of the forcing
frequency and cannot be used to distinguish between resonance and forcing.

Signature of SR can also be observed in the residence time distribution. In the pres-
ence of a periodic modulation, the distribution shows a number of peaks superposed
on an exponential background. However, this is observed both in the case of reso-
nance as well as forcing. The ambiguity is, therefore, present in theoretical [40] and
experimental [150] studies of noise-free SR, where regular and chaotic phases take
the role of the two stable states in conventional SR. Although the distribution of the
lengths of the chaotic interval shows a multi-peaked structure, this by itself is not
sufficient to ensure that the enhanced response is not due to "forcing". In the present
work this problem is avoided by measuring the response of the system in terms of
the peaks in the normalized distribution of residence times [60]. For SR, the strength
of the peaks shows non-monotonicity with the variation of both noise intensity and
signal frequency.

Ippen et al l95l have used a chaotic driving term to show SR-like behavior in the SNR
of the system response. However, in this case, the chaos is supplied from outside, and
not inherent to the system. Indeed, this distinction between stochastic and chaotic
driving is somewhat artificial as, e.g., random numbers for Monte Carlo simulations
are generated using chaos. If SR is actually used for information processing by
biological systems, then it is likely that organs producing chaotic behavior might
enhance their survival capability through selective amplification of signals in a noisy
background. In this case, the inherent chaos of the system itself could play the role
of "noise". In the model proposed in this chapter, a simple one-dimensional map
has been shown to use its inherent chaoticity to replicate SR-like phenomena. This
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suggests a deep relation between stochastic resonance on the one hand, and crises in
chaotic dynamics on the other, mentioned in [31]. The present work also supports
this view.

3.2 The model

The simplest chaotic system to show SR-type behavior are one-dimensional maps
with two critical points. The most commonly studied system of this kind is the cubic
map [122, 190],

t ^ *7 :on l , + (7 -a )n , , ,

where a is a tunable parameter. The map is found to consist of two attractors, the
initial condition determining the attractor into which the system settles. Various
properties of such 'bimodal' maps differ from those observed for the well-studied class
of maps with a single critical point (e.g., the logistic map).

Recently, SR has been studied in l-D maps with two well-defined states (but not
necessarily stable) with switching between them aided by either additive or multi-
plicative external noise [58]. However, dynamical contact of two chaotic 1-D maps
can also induce rhythmic hopping between the two domains of the system [158]. The
present work shows how the chaotic dynamics of a system can itself be used for
resonant switching between two states, without introducing any external noise.

The model chosen here is a piecewise linear anti-symmetric map, henceforth referred
to as the Discontinuous Anti-symmetric Tent (DAT) map, defined in the interval

[ -1 ,1 ] :

The map has a discontinuity at r : 0. The behavior of the system was controlled
by the parameter e (0 < e < 4). Onset of chaos occurs at a: I. The chaos is
symmetry-broken, i.e., the trajectory is restricted to either of the two sub-intervals
R:(0'1] and L:(0,-1], depending on init ial condit ion. Symmetry is restored at a:2.
The Lyapunov exponent of the map is a simple monotonic function of the parameter
a. The piecewise-linear nature of the map makes its behavior simpler to study than,
say, the cubic map described above. The map is shown in Fig. 3.1, the inset giving
a detailed picture of the region around the discontinuity at z : 0. Fig. 3.2 shows
the evolution of the map's attractor with a increasing from 0 to 4.

The map has a symmetrical pair of fixed points nl.,z : +# which are stable for
0 < a ( 1 and unstable for a ) 1. Another pair ofunstable fixed points, ui,+ : +++
come into existence for a ) 2. It is to be noted that as a --+ 2 from above, rj,o both
collide at r : 0 causing an interior crisis [69], which leads to symmetry-breaking of
the chaotic attractor.

f  1 + a(0.5 -  *(n)) ,  i f  n(n) > 0.5

r(n.t 1) : F(r,,) 1 li;(:il ;ifCi,, ;i 
'_;:(?;;'. 

, (r 1)
l .  - t  -  a(o.b * n(n)),  i r  r(n) < -0.b.
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Figure 3.1: The DAT map for a6 :2.07. Inset: a magnified view of the map in the
interval [-0.005, 0.005] x [-0.005, 0.005].

a 0

Figure 3.2: Attractor of the DAT rnap v€rsus a6.
For ze € L, the corresponding image is obtained

The figure was obtained for 16 €
by reflecting about z-axis.
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Figure 3.3: The time-evolution of the sinusoidally perturbed DAT map for as :2.07,

w : t1400 and 5 : 0.05. The broken line is the boundary between L and R.

3.3 Parametric perturbation

To observe SR, the value of a was kept close to 2, and then modulated sinusoidally
with amplitude 6 and frequency u, i.e.,

(3  2 )

We refer to this henceforth as multiplicative or parametric perturbation, to distin-
guish it from additive perturbation (discussed later).

The system immediately offers an analogy to the classical bistable well scenario of SR.
The sub intervals L and R correspond to the two wells between which the system hops
to and fro, aided by the inherent noise (chaos) and the external periodic forcing. In
each positive (negative) half-cycle of the periodic signal, a portion of the map defined
over R (L) overlaps into the domain of the other portion defined over L (R). This is
analogous to the successive raising and lowering of the wells in synchronization with
the signal frequency, allowing the system to escape from one well to the other. The
resultant intermittent switching of the trajectory between L and R is shown in Fig.
3.3. If the dynamics of the system due to the internal noise (chaos) has some inherent
time-scale (say n6), as I --r npthe two time-scales may lock onto each other. This
resonance should be observable through an increase in the response characteristics
of the map.

^  f  ao I  Ss in(2t rwn) ,  i f  r€R
&ntl:  

I  "o 
- Ssini2trwn), i f  ze L.
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F igu re  3 .a :  ( a )  P ,  ( n :7 ,2 ,3 )  ve rsus  w  f o r  as :2 .0 I  and  d :0 .0b ,  ( b )  p , ,  ( n :7 ,2 ,
3) versus a6 for w: 11400 and 6:0.05. The circles represent the average value of
Pu for 18 different initial values of r, the bars representing the standard deviation.
The data points are joined by solid lines for the reader's convenience.

3.3.1 Simulation results

The response of the system is measured in terms of the normalized distribution of
residence times, .nf(n) [00]. This distribution shows a series of peaks centered at
ni : (j - i)ro, i.e.,odd-integral multiples of the forcing period, no : 

"L,. 
The strength

of the j-th peak

o, : 1,,',,',1),,'"oo N1n1d"n (o < o < o.2b), (3 3)

is obtained at different values of cu, keeping a6 fixed for j:I,2 and B. To maximize
sensitivity, a was taken to be 0.25. For a6 : 2.0! and 6 : 0.05, the response of
the system showed a non-monotonic behavior as u was varied, with Pr peaking at
wt - 11400, a value dependent upon ao - d clear signature of SR-type phenomenon.
P2 and P3 also showed non-monotonic behavior, peaking roughly at odd-integral
multiples of i.,'1 (Fig. B.a (a)). For a6 1 2, pl increases monotonically to 1 with
decreasing a.r, while, PiU > 1) goes down to zero. So, 'true resonance,, signified by
the non-monotonic profile of P1, occurs only for as ) 2.

Similar observations of P7 were done also by varying as, while keeping r,r fixed. Fig.
3.4 (b) shows the results of simulations for a : 11400 and 5 : 0.05. Here also a
non-monotonicity was observed for Pt,Pz and Pt. The broadness of the response
curve and the magnitude of the peak-strengths are a function of the perturbation
magnitude, 5. The variation of P1 with as for different values of 5 were also studied
(Fig. 3.5). As 6 decreases, the response curve becomes more sharply peaked while
the peak-strength decreases.

Note that, the parametric perturbation cannot be done without modulating the noise-
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Figure 3.5: P1 versus a6 for w: 11200 at 6:0.01, 0.05 and 0.025. The circles repre-
sent the average value of P," for 18 different initial values of r, the bars representing
the standard deviation.

intensity. This seems to be the principal difference between this type of 'chaotic

resonance' and classical SR. As the local slope of the map, a, is varied periodically,
the internal noise, whose intensity is a function of the Lyapunov exponent (and hence
of a) also varies periodically. In contrast, for classical SR, the wells are raised or
lowered periodically without affecting the external noise, which is independent of the
geometry of the wells.

3.3.2 Theoretical analvsis

Analytical calculations were done to obtain the invariant probability density and
the dominant time-scale governing the residence-time distribution. This was done
by proper partitioning of the domain of definition of the system and obtaining the
eigenvalues of the corresponding transition matrix. From Fig. 3.2, it is clear that
the system spends a longer t ime in the interval[-el2,ef2],where €: a6 - 2. So a
natural partitioning of the interval [-1,1] is into the four sub-intervals: C1 : l_I, -rl2],
C2: l-e12,0], Cs: l},el2l and Ca : [el2,I).  This is an exactly Markov part i t ion
at integral values of e, i.e., the partition boundaries, {pa} transform into each other
on application of the map dynamics, ( f @i) e {p;}) [1s]. It is assumed that for
e --+ 0 the partitioning approximately retains its Markovian character, so that the
process can be mapped onto a Markov process. Close to e : 0, the transition matrix

1 .95
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where, Wij : P(Co, Ci) is the probability of transition ftom Ci to C1. The eigenvalues
of the above matrix are )1 : 1, Iz : L#,#, ,\3 : 1$7a and )+ : 0. The largest
eigenvalue, 1, corresponds to the invariant probability derisity over the four intervals.
The next largest eigenvalue dominates any time-dependent phenomena. The relevant
time-scale (i.e., the mean residence time) is given by [12S]

-1
'  t 1 - e  l )  

" 2  
l a ,  

-

log(-- ;#)
r - e '  14  l

Iog(7 - e l2)'
(3  5 )

So, for ao : 2.01, np - 200. This predicts that a peak in the response should be
observed at a frequency fi 

- !f 400, which agrees with the simulation results. For
small €, \2 - exp(-el2). Therefore) as ao -) 2 from above, the residence time
diverges as

n*  -  (ao  -  
"6 ) - t  ,  

a i  : 2 .

corresponding to the above partitioning is:

W:

7-e l2-e2 l4
I,r2 l4

e
) + r

0
0

n
aQ-e2  / 4 )
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t e

, L L- 
: t-.-iz'i,z l+

a$-e2 la) 7-r2 14

- 1

(3 4)

(3 6)

The mean time spent by the trajectory in any one of the sub-intervals (L or R) can
be calculated exactly for piecewise linear maps [50]. For e ) 0, the intervals B1 :
(0, {fE] and B2: [1- Xt+,t] of R maps to L, so that the trajectory escapes from one
sub-interval to the othei. Note the symmetrical placement of the two R --+ L 'escape

regions 'about  r :0 .5,  because of  the symmetry  F( I l2_ r )  :F(112*r)  o f  the DAT
map' So the total fraction of R escaping to L after one iteration is 11 : ,#^. Let us
now consider the first pre-image of B1 and B2,whichescapes from R to'LXfter two
iterations. The total fraction of R belonging to this set is 12 - *#n Proceeding
in this manner, we find from the geometry of the map that th" ;bd;i fraction of R
which maps to L after n iterations is

).tL r
t -o,, - dliTii

4 \ p  I  L l

(3.7)

These are just the probabilities that the trajectory spends a period of n iterations in
R before escaping to L (fp, li : 7). So the average lifetime of a trajectory in R is

rc

1n ) :  I r i  -  L) t j  -

For a6 - 2.0I, < n > : 200, in good agreement with the result obtained using the
approximate Markov partitioning (which ensures the validity of the latter approxi-
mation). The above equation also establishes exactly the linear scaling relation of

2
€.

(3 8)



the mean lifetime about € : 0, with ( n ) diverging at &o :2. By symmetry of the
map, identical results will be obtained if we consider the trajectory switching from
L toR .

Another interesting quantity which also shows a scaling behavior around e : 0, is
the drift rate, ?.r, from one sub-interval to the other [71]. This measures the rate
at which the chaotic trajectory switches between L and R. Owing to the symmerry
F(-r) : -F(r) of the DAT map, the net drift rate is zero, i.e., switching to either
sub-interval occurs equally often. Let us consider switching from R to L (identical
results will hold for switching in the opposite direction due to symmetry). The drift
rate is measured by the fraction of R mapping to L per iteration. Hence,

(3.e)
2+e

It is again a linear scaling relation &s a,6 -) 2 from above. Note that, for a6 < 2,
u : 0 as the two sub-intervals are isolated from each other. Thus, o is analogous to
an 'order parameter', having a finite (positive) value above a0 : 2 and zero below
it. This suggests that the merging of the chaotic attractors &t a6 : 2 is akin to a
critical phenomena, with the local slope as as the tuning parameter.

3.4 Additive perturbation

Similar study was also conducted with additive perturbation for the above map. In
this case the dynamical system is defined as follows:

rn*r: F("") * 6sin(2trwn). (3 .10)

For a:1.9 (tuy), the map has two disconnected sub-intervals, L:[-1,0) and R:(0,1].
However, an additive perturbation of magnitude 6 > 0.1 causes a portion of L to
diffuse into R in the positive half-cycle of the sinusoidal signal (of frequency a).
Similarly, in the negative half-cycle, a portion of the R interval diffuses into L. The
long-term behavior of the map is described by a "smeared-out,, DAT map with a
width 6, rather than the "crisp" piecewise linear DAT map with a6 : 1.9. This
happens as the map performs a periodic vertical motion, causing a smearing-out
over time. The simulation results showed non-monotonic behavior for the response,
as either u ot {rs was varied, keeping the other constant, but this was less marked
than in the case of multiplicative perturbation (Fig. 3.6). This work can be seen in
context with studies conducted on the dynamics of the logistic map under parametric
perturbation f153].
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Figure 3.6: P. (, : 7, 2, 3) versus r,; for ao : 2.0! and d : 0.0b, in the case of
additive perturbation. The circles represent the average value of Pu for 18 different
initial values of z, the bars representing the standard deviation.

3.5 Nonlinear resonance in a chaotic neural net-
work model

The resonance phenomenon is also observed in an excitatory-inhibitory neural pair,
with anti-symmetric, piecewise linear activation function. This type of activation
function has been chosen for ease of theoretical analysis. However, sigmoidal ac-
tivation functions also show similar resonance behavior. When a small amplitude
periodic signal is given as external input, it is enhanced if the signal frequency is
close to the "characteristic frequency" of the chaotic activity. This is due to reso-
nance between the periodic signal and the chaotic switching. The frequency-sensitive
enhanced response to stimuli allows the detection of signals which would otherwise
have been undetected. As shown below by theoretical and simulation studies, proper
choice of system parameters leads to resonant enhancement of signals of a desired
frequency bandwidth.

If 2,, and A,, (r,A € [-7,1]) be the state of the excitatory and inhibitorv elements
at the n-th iteration, respectively, then the discrete time-evolution equation of the
system is given by

frn*1 -- Fo(wrrrr, - wyrU, I lrr),

Unll: F6(w*nrr, - QryyAn. I lrr),

where w;i is the connection weight from neuron j to neuron i, and 1 is an external
input. The activation function is of anti-symmetric, piecewise linear nature, viz.,
F"(z)  -  -1 ,  i f  z  I  - I lo ,  F"( r )  :  az, i f  -  I la  I  z  I  | fa ,  and.  F"( r ) :  1 , i f  z  > I la .
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Figure 3.7: The (b/a) vs. ft parameter space at a : 6.0, for neural pair dynam-
ics governed by an anti-symmetric, piecewise linear activation function. Region A:
z* : 1- k stable, B: z* : | lG + kb) stable, C: z* : 0 stable, D: 2-period cycie
between [(1 - k), -(1 - k)], E: superstable periodic cycles, F: two-band symme-
try-broken chaos, G: symmetric chaos. The two thin bands, between B and F, and
again, between F and C, indicate regions of single-band symmetry-broken chaos.

Under the restriction w*f w** : way/u,a : k, the 2-dimensional dynamics reduces
to a simple 1-dimensional form. The relevant variable is now the effective neural
potential z : tr - ky (z € [-1, 1]), whose dynamics is governed by

zntr :  F"(2. )  -  kF6(2, ) ,

where a,b are the suitably scaled transfer function parameters. The design of the
network ensures that the phase space [-1,1] is divided into two well-defined and
segregated sub-intervals L:[-1,0] and R:[0,1]. Analysis shows that for a ( 4, there is
no dynamical connection between the two sub-intervals. For a ) 4, in a certain range
of (b, k) values the system shows both symmetry-broken and symmetric chaos. In the
former case, the trajectory, while chaotically wandering over one of the sub intervals,
cannot enter the other sub interval. In the latter case, this restriction is removed
and the trajectory visits both sub-intervals in turn. The parameter space diagram in
Fig. 3.7 shows the various dynamical regimes occurring for different values of k and
bf a, at a:6. The curve in (bf a,/c)-parameter space forming a boundary between
the symmetric and symmetry-broken chaotic domains is given by the equation:

k :a ( I I

For the simulations reported here, a : 6 and b : 3.42, for which the system shows
symmetric chaos over a range of values of ft.

The chaotic switching between the two sub-intervals occurs at random. However the
average time spent in any of the sub-intervals before a switching event can be exactly

(3 .11 )t - (+la)) lzb.
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Figure 3.8: The map representing the dynamics of a neural pair for a : 6.0, b :8.42
and k : 1.3811. The figure in solid lines represent the unperturbed map, while the
figures in broken lines indicate the maximum displacement due to a periodic signal
of peak amplitude, 5 : 0.1.

calculated for the present model:

n* :  I l (bk (7  -  (bk la ) )  -  1 ) . (3 .12)

As a complete cycle would involve the system switching from one sub-interval to the
other and then switching back, the "characteristic frequency" of the chaotic process
is {,J. : 1l2np. E.g., for the system to have a "characteristic frequency" of w : I I 400
(tuy), the above relation provides the value of k - 1.3811 for a : 6,b : J.42. The
system being symmetric, there is no net drift between L and R. However, in the
presence of an external signal of amplitude e, the symmetry is broken. The net drift
rate, which measures the net fraction of phase space of one sub-interval mapped to
the other after one iteration, is given by u :e, i f  e ( e", and u : I  - (kbla) - (I lbk),
otherwise. The critical signal strength,

€c :  1  -  (k 'b ' - t  a) f  akb, (3 .13)

is a limit above which the net drift rate no longer varies in phase with the external
signal. For the aforementioned system parameters (a,b,k), r, - 0.001. If the input
to the system is a sinusoidal signal of amplitude ( e" and frequerc/ ru (rc, we can
expect the signal to be enhanced, as is borne out in the simulations described below.
The effect of a periodic input (having peak amplitude 6, say) is to translate the map
describing the dynamics of the neural pair, to the left and right, periodically. Fig.
3.8 shows the unperturbed map (solid lines) along with the maximum displacement
to the left and right (broken lines) for 5 : 0.1.

As before, we verify the presence of resonance by looking at the peaks of the residence
time distribution, where the strength of the jth peak is given by Eqn. (3.9). For max-
imum sensitivity, a is set as 0.25. As seen in Fig. 8.9, the dependenc e of. P1(j : L,2,8)
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Figure 3.9: The peak strengths of the normalized residence time distribution,
P,,(n : \,2,3), for periodic stimulation of the excitatory-inhibitory neural pair
(o: 6, b : 3.42 and ft :  1.3811). The peak amplitude of the periodic signal, 5 :

0.001. P1 shows a maximum at a signal frequency w, - Lf 400

on external signal frequency, o, exhibits a characteristic non-monotonic profile, in-
dicating the occurrence of resonance at u - Il2np. For the system parameters used
in the simulation, np:200. The results clearly establish that the switching be-
tween states is dominated by the sub-threshold periodic signal close to the resonant
frequency.

The above results indicate that deterministic chaos can play a constructive role
in the processing of sub-threshold signals. Experimental study involving crayfish
mechanoreceptor cells have provided evidence of SR in the presence of external noise
and periodic stimuli. The evidence of chaotic activity in neural processes of the
crayfish [142] suggests that nonlinear resonance (as reported here) due to inherent
chaos might also be playing an active role in such systems. The versatility of biolog-
ical sensory apparatus could be partially emulated in artificial systems by using the
proposed resonance mechanism for signal enhancement.

3.6 Discussion

Low-dimensional discrete-time dynamical systems are amenable to several analyti-
cal techniques and hence can be well-understood compared to other systems. The
examination of resonance phenomena in this scenario was for ease of numerical and
theoretical analysis. However, it is reasonable to assume that similar behavior oc-
curs in higher-dimensional chaotic system, described by both maps and differential
equations. In fact, SR has been reported for spatially extended systems (spatiotem-
poral SR) [112], e.8., in coupled map lattices [5S]. A possible area of future work is
the demonstration of phenomena analogous to spatiotemporal SR with a network of
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coupled excitatory-inhibitory neural pairs.

The close resemblance of the merging of attractors with critical phenomena has
possible relevance to SR in Ising systems. Although numerical studies have reported
SR in kinetic Ising system, it seems to be inconclusive as the primary peak strength
of the normalized residence-time distribution shows only a monotonic behavior [163],
[164]. This response profile is identical to that observed in DAT Map for as 12.
A study of kinetic aspects like hysteresis is planned to be undertaken, which should
give information concerning the phase-dependence of the resonance behavior. The
relation of nonlinear resonance to the phenomena of deterministic diffusion [66, 104]
is another area of further study.

The observation of 'SR' in chaotic systems also has implications for the area of
noisy information processing. It has been proposed that the sensory apparatus of
several creatures use SR to enhance their sensitivity to weak external stimulus, e.g.,
the approach of a predator. Some experimental work on crayfish have provided
supporting evidence to this assertion [aS]. The above study indicates that external
noise is not necessary for such amplification as chaos in neural networks can enhance
weak signals. As chaotic behavior is extremely common in a recurrent network of
excitatory and inhibitory neurons, such a scenario is not entirely unlikely to have
occurred in the biological world. This can however be confirmed only by further
biological studies and detailed modeling of the phenomena.
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