
Chapter 2

Intrinsic Dynamics of an
Excitatory-Inhibitory Neural Pair

A pair of an excitatory and an inhibitory neurons, coupled to each other and evolving
in discrete time intervals, is one of the simplest systems capable of showing chaotic
behavior. This has guided the choice of this system for extensive study in this thesis.
The present chapter examines the discrete-time dynamics of such coupled neuron
pairs with four different types of nonlinear activation functions. The complex dynam-
ical behavior of the system is generic for the different types of activation functions
considered here. Features specific to each of the functions, were also observed. For

example, in the case of piecewise linear functions, border-collision bifurcations and

multifractal fragmentation of the phase space occurred for a range of parameter val-
ues. Anti-symmetric activation functions show a transition from symmetry-broken
chaos (with multiple coexisting but disconnected attractors) to symmetric chaos
(when only a single chaotic attractor exists). The model can be extended to a larger
number of neurons, under certain restrictive assumptions, which makes the resultant
network dynamics effectively one-dimensional. Possible applications of the network
for information processing have been outlined. These include using the network for
auto-association, pattern classification, nonlinear function approximation and peri-

odic sequence generation.

The rest of the chapter is organized as follows. The basic features of the neural
model used is described in section 1, along with the biological motivation for such
a model. The next section is devoted to analyzing the dynamics of a pair of exci-
tatory and inhibitory neurons, with self- and inter-connections. Two specific types
of activation functions are chosen for detailed investigation, with either (i) asym-
metric, piecewise linear, or, (ii) anti-symmetric, sigmoid characteristics. This simple
system shows a wide range of behavior including periodic cycles and chaos. In sec-
tion 3, we discuss the effect of introducing a non-zero threshold (or "bias"), which
is equivalent (in the present model) to subjecting the system to a constant exter-
nal input. Section 4 extends the model to larger networks under certain restrictive
conditions. This is followed by a discussion of the possible application of the model
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to various information processing tasks, such as associative memory and nonlinear
function approximation. The rich dynamics of the system allows it to respond to
specific inputs with periodic or aperiodic responses (in contrast with convergent net-
works, which give time-independent constant output) and also to act as a central
pattern generator. We conclude with a short discussion on possible ramifications of
the model.

2.L Single tneuron' behavior

Let u,, denote the activation state of a model neuron at the n-th time interval. If
u,,:7, the neuron is considered to be active (firing), and if u,, - 0, it is quiescent.
Then, if tr,, is the input to the neuron at the nth instant and d be the threshold, the
discrete-time neural dynamics is described by the equation

ur r :  F (ur "  -  0 ) , (2 1)

assuming there to be no effects of delay. The input u,, is the weighted sum of the
activation states of all other neurons, at the (rz - l)-th instant, that are connected to
the neuron under consideration, together with external stimulus (if any). The form
of. f is decided by the input-output behavior of the neuron. Usually, it is taken to
be the Heauiside step function, i.e.,

( ,  , \

where 0 is known as the threshold.

If the mean firing rate., r.e., the activation state averaged over a time interval, is
taken as the dynamical variable, then a continuous state space is available to the
system. If X,, be the mean firing rate at the n-th time interval, then

X,"+7 : Fr(E1W1X,"+ I. - 0*). (2 3)

Here, F is known as the actiuation function and pr, is the parameter associated with
it. The first term of the argument represents the weighted sum of inputs from all
neurons connected with the one under study. W1 is the synaptic weightage for the
connection to the jth neuron. d, and 0, represent the external stimulus and threshold
respectively, at the nth instant.

Considering the detailed biology of a neuron, there are two transforms occurring at
the threshold element. At the input end, the impulse frequency coded information is
transformed into the amplitude modulation of the neural current. For single neurons,
this pulse-wave transfer function is linear over a small region, with nonlinear satura-
tion at both extremities. At the output end, the current amplitude is converted back
to impulse frequency. The wave-pulse transfer-function for single neurons is zero be-
low a threshold, then rises linearly upto a maximum value. Beyond this maximum,

F(r)  :  1,
:0 ,

i f  z )  e ,
otherwise,
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the output falls to zero due to "cathodal block". These relations are time-dependent.
For example, the slope of the wave-pulse transfer function decreases with time when
subjected to sustained activation - this is known as "adaptation" [53].

The net transformation of a input by a neuron is therefore given by the combined
action of the two transfer-functions. Let us approximate the nonlinear pulse-wave
transfer function F1 with a piecewise linear function, such that

Ft(z) :  -c)  i f .  z< -c lm,
:  rnz )  i f  - c lm ( .2 ( -71^ ,
:  1 ,  i f  z )  I l * .

The wave-pulse transfer function F2 is represented as

Fz(z )  :  0 ,  i f  210 ,
:  m ' (z -0 ) ,  r f .  0  (  21  0+( I lm ' ) ,
:  0 ,  i f  z )  O+( I lm, ) ,

(2.4)

(2 .5 )

where m,m'are the slopes of tr'1,.F'2 respectively, c is the inhibitory saturation value
and d represents a threshold value.

It is easily seen that the combined effect of the two gives rise to the resultant transfer
function. G. defined as

G(r)  :  0 ,  i f  z1e,
:  mm'( r -0) ,  i f  0  <z< 0+( l lm) ,
:  m '  (7-0) ,  i f  e+01*)  121 0+(L lm' ) ,
:  0 ,  i f .  z )  O+( I lm ' ) .

(2.6)

In the present work we will assume that m' (1- 0) << 0 + (Ll^'). This condition
ensures that the operating region of the neuron does not go into the "cathodal block"
zone. This allows us to work with the following simplified, piecewise linear neural
activation function (upon rescaling) throughout the rest of the thesis:

F" (z )  :  0 ,  i f .  210 ,
:  a (z -0 ) ,  i f .  e  12<-?+( I la ) , ,
:  1 ,  i f  z )  0+(7 la ) ,

where 
" 

(> 0) is called the gain parameter of the function (Figure 2.1 (a)). Note
that, this activation function is asymmetric as it corresponds to an input-output
mapping of the form (-oo,oo) --+ [0,1]. For infinite gain (o - m), the activation
function reverts to the hard-limiting Heaviside step function.

The piecewise linear nature of the model neuron used, not only makes detailed theo-
retical analysis possible, but also enables an intuitive understanding of the dynamics,
at least for a small number of connected elements. This makes it easier to extrap-
olate to larger networks and suggest possible applications. The proposed model is
also particularly suitable for hardware implementation using operational amplifiers
(owing to their piecewise linear characteristics).

(2.7)
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On translation and scaling, we obtain an antisymmetric form of this activation
function, viz.

so that the input-output mapping is now of the form (-m, m) - [-1, 1] (Fig.
2 .1  ( b ) ) .

Although, in the present study, the gain parameter, a, of the transfer function is

considered constant, in general it will be a time-varying function of the activation
state, decreasing under constant external stimulation until the neuron goes into a
quiescent state. The threshold g is also a dynamic parameter, changing as a result of

external stimulation. We have also assumed that the neuron state at the nth instant
is a function of the state value at the previous instant only. Introducing delay effects

into the model, such that,

Xy,.+r : F (Xr",, Xrr-t, . . ., Xu-r),

might lead to novel behavior. This is discussed briefly in the concluding section.

If we now consider neural populations, instead of single neurons, then sigmoidal

activation functions of the form

F" ( z )  :  - 1 ,  i f  211 - ( I l a ) ,
:  a (z-0) ,  i f  0 - ( r la )<z< 0+( l la ) , ,
:  I ,  i f  z )  0+( I la ) ,

F" ( z )  :  I - eo ' ,  i f .  z )  0 ,
: 0, otherwise,

(2.8)

(2 e)

are the appropriate choice (Fig. 2.1 (c)). Note that, the output of a neural population

is not a train of pulses (as in single neuron) but a continuous pulse density. By

varying a, transfer functions with different slopes are obtained. In the neurobiological

situation, the slope is both state-dependent (e.g., it increases with the behavioral

arousal of a subject) and input-dependent (increasing with sensory excitation). In

this work, we have taken a to be constant.

As in the piecewise linear case, here also we can define an antisymmetric form of the

activation function (Fig. 2.1 (d)) as follows:

F " ( z )  :  I - e -o ' ,  i f .  z )  0 ,
: -( l  - 

"" ') ,  
otherwise.

(2 .10)

Note that for all the activation functions defined so far (i.e., Eqns. (2.7), (2.8), (2.9)

and (2.10)), the following common features hold:

o f (0) : 0, i.e., 0 is a 'fixed-point' of the function, and

o the functions saturate at an output value, arbitrarily set to unity.
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Figure 2.2: The pair of excitatory (r) and inhibitory (g) neurons. The arrows and

circles represent excitatory and inhibitory synapses, respectively.

2.2 Excitatory-inhibitory pair dynamics

Having established the response properties of single neurons, we can now study the

dynamics when they are connected. It is observed that, even connecting only an

excitatory and an inhibitory neuron with each other leads to a rich variety of be-

havior, including high period oscillations and chaos. The continuous-time dynamics

of pairwise connected excitatory-inhibitory neural populations (with sigmoidal non-

linearity) have been studied before [204). However, an autonomous two-dimensional

system (i.e., one containing no explicitly time-dependent term), evolving continu-

ously in time, cannot exhibit chaotic phenomena, by the Poincare-Bendixson theorem

[18S]. In the present case, the resultant system is updated in discrete-time intervals

and the dynamics is governed by one of the nonlinear activation functions defined in

the previous section. This makes chaotic behavior possible in the proposed neural

network model.

If X and Y be the mean firing rates of the excitatory and inhibitory neurons, respec-

tively, then their time evolution is given by the coupled difference equations:

X,t+r : F,(W*,X," - W*oYr),

Yr.+t : F6(Wy*X, - WyyY,).

(2 .11)

The network connections are shown in Fig. 2.2. The W*o and Wn* terms represent

the synaptic weights of coupling between the excitatory and inhibitory elements,

while W** and Woo represent self-feedback connection weights. Although a neuron

coupling to itself is biologically implausible, such connections are commonly used in

neural network models to compensate for the omission of explicit terms for synaptic

and dendritic cable delays [53].

Without loss of generality, the connection weight ages W*, and Wy* can be absorbed

into the gain parameters a and b and the correspondingly rescaled remaining con-

nection weightages,W*o andWyy., are labeled k and k' respectively. For convenience,
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Figure 2.3: The one-dimensional map representing neural pair dynamics with asym-
metr ic ,  p iecewise l inear  F for  (a)  /c :  k '  : l  and (b)  k :k '  * I .

a transformed set of variables, Zr, : X," - k Y,, and Z', : Xr, - k' Y, is used. The
dynamics is now given by

2,"+1: F"(2,,) - k Fb(Z;), (2.72)

Z'*+t : F"(2") - k' Fb(Z:,) '

Note that., if. k : k' , the two-dimensional dynamics is reduced effectively to that of
an one-dimensional difference equation ("rnup"), simplifying the analysis. We shall
now consider in detail the dynamics of the map, when ,F has either (i) asymmetric,
piecewise linear nature, or (ii) anti-symmetric, sigmoid character.

2.2.L Asymmetric, piecewise linear activation function

Chaotic activity has been previously observed in piecewise linear systems, for both
continuous-time [157] as well as discrete-time evolution [132, 133] of the system. In
the following investigation, we shall examine the cases: (i,)k : k' : I, (ii)k : k' I I,
afi (i'i ' i)k f k' , rn detail. Throughout the present section, the threshold, 0, will be
taken as 0 (a non-zero value of I introduces some new phenomena, which will be
investigated in the next Section).

CaseI :k -k ' - l
This represents the condit ion when the connection weightsW*o:W** andWrr:
Wr*, (a > b). The dynamics is that of an asymmetric tent map (Fig.2.3 (a)):

Zn+1 :  (a  -  b)  2 , " ,  i f  0  12, ,1  7 lo ,
: I  - bzu, i f  Ll" < Z. < I lb, (2.13)
: 0, otherwise.
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Figure 2.4: The activation gain a vs. (bla) parameter space for k: k' :I. Region
A.: z* :0 stable,B: z* : I IG i b) stable, C: chaos, D: coexistence of z* :0 and a
fractal chaotic invariant set.

The fixed points of this system arc, Zl : 0 atd Z$ : Ll(J+b). Zi is stable for
a-b < 1, whereas ZI exists only when a-b > 1, and is stable for b < 1. Beyond
this, chaotic behavior is observed unless the maximum output value, i.e., 1 - (bl"),
maps to Z > llb. The parameter space diagram is shown in Fig. 2.4. Along the
linebf a:0.5, we get the symmetric tent map scenario. So the Lyapunov exponent
1 along this curve grows as ) : log"(b) for 0 ( a I 4. This is one of the two special
cases where an analytical expression for ,\ can be obtained. The other instance is
when the map's invariant probability distribution, P(Z): 1. This occurs when

F (7 la )  -  1 -  (b la ) : t l b . (2.14)

Along the curve defined by the above relation, the Lyapunov exponent evolves with
the parameter bf a according to

). : -bla tog"(bla) - (1 - (b/a))log"(t - (bla)). (2.15)

In general, .\ has to be obtained computationally. Fig. 2.5 shows .\ plotted against
bf a for a : 4, when the map is in the chaotic region. A sharp drop to zero is
observed in both the terminal points, indicating sharp transition between chaotic
and fixed-point behavior at bla:0.25 and 0.75. At bla - 0.5, the entire interval

l0,Ilbl is uniformly visited by the chaotic trajectory (P(Z) - 1). This corresponds
to "fully-developed chaos" in the symmetric tent map for which .\ : log"(2) : 0.693.

lLyapunov exponent (,\)
dimensional mapping .F as:

Chaotic behavior is indicated by a positive value of l.

is a quantitative indicator of chaotic behavior.

1 Sar)  :  L im,ry-- i tor" l  L *1, : , , .
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Figure 2.5: Lyapunov exponent of the chaotic dynamics for ft : k' :1 and a : 4.0.
At bla: 0.5, the entire interval l0,Ilb] is uniformly visited.

When F(Lla) > 7lb, the interval [0,1/b] is divided into a chaotic region of measure
zero, defined on a non-uniform Cantor set (in general) and an "escape set" which
maps to Zi : 0. This is because , for Z e (|lb(a - b), (b - I) lb'), F(Z):O. Any time
an iterate of Z f.al\s in this region, in the next iterate the trajectory will converge
to Zi. The points left invariant after one iteration, will be in the two intervals

[0 ,7 lb(a- b)] and l(b- 1) lb2 ,1] . The phase space is thus fragmented into two invariant
regions. After n iterations, there will be 2" fragments of the chaotic invariant set, with
v t . f r r . (n - r ) l ( r : 0 ,1 , . . . , n )  i n te rva l so f  l eng th (a -b ) ' ( 1  -b ) ' ' - " .  The f ragmen ta t i on
of the phase space, therefore, has a multifractal nature [123].

The presence of multiple length scales is due to the fact that the slope magnitude
of the map is not constant throughout the interval l},tlbl. It is to be noted that,
even for Z rlot belonging to the fractal invariant set, the trajectory might show long
chaotic transients unti l  at some iterate i t  maps to Zr:0. For bf a:0.5, the map
has a constant slope. As a result, the Cantor set is uniform, having exact geometrical
self-similari ty and a fractal dimension, D :1og"(2)/ log"(b). So, the phase space
of the coupled system has a fractal structure in this parameter region, i.e., where
L - (b l a )>7 |b .

Fig. 2.6 shows the bifurcation structure of the map for a: 4. For bf a < 0.25,
the fixed point Zj is stable. At bla:0.25 it becomes unstable, leading to bands
of chaotic behavior. The chaotic bands collide with the unstable fixed point Z| at
blo - 0.2985... and merge into a single chaotic band. This band-merging transition
is an example of. crisis [69] and has been studied in detail for the symmetric tent
map [206]. The b-value at which the band-merging occurs for a given value of a, can
be obtained analytically by solving the quartic equation:

(2.16)b4 + (1 - 2a)b3 -f (o' - o)b' * ab I (a - a2) : g.
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Figure 2.6: Bifurcation diagram for ft : k' : I at a: 4.0.
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For 2 < a < 2.5, all the roots are complex, implying that band-merging does not
occrrr over this range of a-values.

Uniform chaotic behavior occurs at bf a: 0.5 (the entire interval [0,1/b] is uniformly
visited by the chaotic trajectory). The chaotic band collides with the tnstable Z)
again at bla: 0.75. This boundary crisis destroys chaos and stabilizes the fixed
point  Z i  :0 .

Case I I :  k  -k '# I
This represents the condition when the connection weightages are such that, W*ofW** :
Wyyfwy,: k, (o > b). The dynamics is given by the following map (Fig. 2.3 (b))

Zr,.+t : (a - kb) 2,,, if 0 < Z*< 7lo,
:  I  -  kbz , , ,  i f .  71"  1Z, ,1 I lb ,
:  I - k ,  o the rw i se .

(2.17)

The key difference with the earlier case is that, now, the dynamics supports super-
stable period-m orbits (m > 2). This is a result of the existence of a region of zero
slope (Z
Zi :0 (as before), and,

Z ;  :  I - k ,  i f 0  <  k  < I -  ( L l b ) ,  o r ,
: IIQ + kb), if (a - 7)lb > k > I - (Ilb).

Z; : 7 - k, if it exists, is superstable, as the local slope is zero. On the other
hand, Z) : Ll$+ kb) is stable, only if bk < I. If the fixed points are unstable,
but iterates of. Z fall in the region Z > 7lb, superstable periodic cycles occur. The
fixed point, Zi : 0, becomes stable when (a - bk) ( 1. Chaotic behavior occurs if
none of the fixed points are stable, and no iterate of. Z f.aIls in the region Z > 7lb.
The (bl a) vs. k parameter space diagram in Fig. 2.7 (for a : 4) shows the different
dynamical regimes that are observed.

The bifurcation diagram for a: 4,b:2 (Fig. 2.8) shows how the dynamics changes
w i t hk .  Fo r0  <k  <0 .5 ,  Z ;  -  1 - f t ,  i s t hes tab le f i xedpo in t .  A t k :0 .5 ,  Z ;
becomes unstable, giving rise to a superstable period-2 cycIe. A periodic regime is
now observed, which was absent in the previous case. The periodic orbits initially
follow a period-doubling sequence until a period-32 (: 2 x 2a) orbit gives rise to a
period-48 (: 3 x 2a) one. This occurs as a result of a border-collision bifurcation by
which "period-2 to period-3" bifurcations have been seen to occur [132, 133]. In the
above instance, each of the sixteen period-2 orbits give rise to a period-3 orbit. The
structure of the superstable periodic orbits is quite complex. The length of the cycles
is plotted against k in Fig. 2.9. The remarkable self-similar structure of the intervals
is to be noted. Numerical studies indicate that cycles of all periods exist having the
following ordering: between any superstable period-rn. and period-(rn*1) cycle, there
exists an interval of k for which a period-(m + 2) orbit is superstable. At k : 1.0
all periodic orbits become unstable, leading to onset of chaos. The chaotic behavior
persists till k : 1.5, when Zi : 0 becomes stable. The sequence of the periodic cycles



Figure 2.7: The (bla) vs. f t  parameter space for k: k'  +l at a:4.0, Region A:
z - :71 ( l+kb )  s tab le ,  B :  z r :1 -k  s tab le ,  C :  supe rs tab lepe r iod i c  cyc les ,  D :  chaos ,
E :  z *  : 0  s tab le .

k

Figure 2.8: Bifurcation diagram for k : k'  + I at a: 4-0,b:2.0.
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( a )  ( b )

Figure 2.9: Length of superstable periodic cycles, m, of the excitatory-inhibitory

neural pair (a : 4, b : 2) for (a) 0.75 < k < 1, and (b) 0.S2 < k < 0.84' Note the

self-similar structure of the intervals.

is remarkably similar to that seen in the case of unidirectional, adaptive dynamics

on a lattice of chaotic maps [165].

CaseI l I :k lk l
This corresponds to the condition when all the connection weights are different. The

dynamics is irreducible to l-dimension. We need to consider only the positive (2, Z')

region, as otherwise, (0,0) is the stable fixed point. In the non-zero region, different

dynamical behavior may occrrr depending on the region where the fixed point occurs

and on its stability. One of the fixed points is (Z,Z') : (0,0), whose stability is

determined by obtaining the eigenvalues of the corresponding Jacobian,

,:l: -I!,
Evaluating the above matrix, gives the following condition

' 2 < (o - k'b)+ [(" - k'b)' -

for stability of the fixed point.

The other fixed point may occur in any one
(2, Z')-space:

Reg ion  I :  0 (  Z  <7 f  a ,0<Z '<L lb .
(2, Z'): (0,0) is the only f ixed point.

Region I I :  0  < Z <Lf  a ,  Z '  >  L lb .
The f ixed point rs (Z,Z') :  (kl@ - 1), (a(k -
- 1  <a11 .

of the four following regions of the

4ab(k-  k ' ) ) ' l ' <2 , (2 .18)

k') + k')l(" - 1)), which is stable if
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Figure 2.10: The (k,k') parameter space for a : 4.0 and b :2.0. Region 7: :Dr:I,
g*:1 stabIe,2: nr:1, y has period-2 cycles,3: rr*:0, g*:0 stable, a: Both r andy
have period-2 cycles, b: r and y show period-m cycles (^>2). Fully chaotic behavior
occurs in the dark wedge-shaped region in 3. In addition, fractal intervals showing
chaos occur in region b.

Region I I I  Z  )  L f  a ,0 < Z '  <  t lb .
The f ixed point  is  (Z,Z ' ) :  ( ( t  +  b(k '  -  k) )10+bk ' ) , I lQ +bk ' ) ) ,  which is  s tab le i f
- 1  <k ' b<7 .

Region IY: Z ) I f  a, Z' > I lb.
The f ixed point is (Z,Z'): (7-k,7-k').  This is a superstable root, as the local
slope is zero under all conditions.

The abundance of tunable parameters in this case, makes detailed simulation study
extremely difficult. However, some preliminary studies in the (k,k') parameter space
(keeping the other parameters fixed) gives indication of dynamics similar to that
seen in cases (i) and (ze). The (k,k') parameter space is shown in Fig. 2.10 for
o, : 4, b : 2. A variety of dynamical behaviors is observed - from fixed points to
periodic cycles to chaos, as indicated by the different regions. In addition, there are
regions exhibiting periodic behavior which have fractal intervals of chaotic activity
embedded within them.

2.2.2 Anti-symmetric, sigmoid activation function

We will now look at the dynamics of the excitatory-inhibitory neural pair when the
activation function F is of the form (2.10). l f .k:k' , the resultant dynamics is that
of a one-dimensional bimodal map, whose phase space is disconnected into two halves
for k ( 1. We shall consider first the case when k : k' : 1, and then investigate the
change in the behavior of the system when k : k' # L.



Figure 2.11: The sigmoid activation functions (F) for slopes, a:20 and b:5, and the
resulting one-dimensional map.

For k : 1, the two halves of the phase space (.L : (-oo,0) and R : [0, m) are not
connected - i.e., a trajectory starting with an initial condition belonging to .L, can
never reach E in the course of time, and vice versa. The resulting dynamics is that
of the following map:

Zn+l : exp(-bZ,,) - exp(-aZ,,), if 0 1 2,,1 @,
: - exp(bZ,,) * exp(aZ,,), otherwise.

Fig. 2.11 shows the map, arising out of interaction between an excitatory neuron
with slope, & : 20, and an inhibitory neuron with slope, b : 5. The bifurcation
diagram of the map (Fig. 2.L2) ., obtained by increasing the ratto b f a, keeping a fixed

shows a transition from fixed point to periodic cycles and chaos, following a "period-
doubling" route, an universal feature for an entire family of one-dimensional chaotic
maps [188]. FiS. 2.13 shows a magnified image of the bifurcations, which clearly
exhibits the successive doubling of the periodic cycles. The variation of o, keeping
the ratio bf a fixed, also shows a transition to chaotic behavior, as is indicated in Fig.
2 .74 .

The map has 3 fixed points: Zi : 0, Z; and ZI (by symmetry of the map, Zi :
-Zil. The latter are the solutions of the transcendental equation Z : exp(-bz) -

exp(-aZ). The fixed point Zi is stable if the local slope (= (" - b)) is less than 1.
For a t + (where, , : *), this condition no longer holds and Zi loses stability
while Z| becomes stable by a transcritical bifurcation. On further increase of a, this
fixed point also loses stability (by flip bifurcation) with the local slope becoming less
than -1, and a 2-period cycle become stable. Increasing a further leads to cycles of
higher and higher periods becoming stable, ultimately leading to totally aperiodic
behavior.

The chaotic behavior can be quantified, as in the case of the piecewise linear function,

(2.1e)



Figure 2.12: Bifurcation diagram of the map representing excitatory-inhibitory pair

dynamics with sigmoid f' for a:50.
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Figure 2.13: Magnified view of the preceding bifurcation diagram) over the interval
0 < b la < 0.2 (a:50) .
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Figure 2.14 Biftrcation diagram of the map representing excitatory-inhibitory pair

dynamics with sigmoid F for bf a:0.5.
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Figure 2.15: Lyapunov exponent (.\) plotted against a for bf a: 0.5.

by the Lyapunov exponent (),). FiS. 2.15 shows the variation of ), with a (bf a:
0.5) and Fig. 2.16 exhibits the chaotic and non-chaotic regions on the basis of the
sign of .\, with regions having ̂  < 0 (i.e., non-chaotic) indicated by black. Notice
the "garlands" of periodic windows within the chaotic region. The isolated points
of periodic behavior, interspersed throughout the chaotic region, are remnants of
periodic windows too flne to be resolved at the present scale.

We shall now consider the case when k : k' # 7. Figs. 2.17 and 2.18 show the
bifurcation diagrams at a:50 and bf a:0.5 over the intervals, (0 < k < 1.5) and
(0.99 < /c < 1.03), respectively. As k decreases from 1, the flatter end of the map
rises, so that, very soon the local slope of the fixed point, Z$ (or, equivalently, Zi),
becomes greater than -1, making it stable. This is indicated by the long interval of
non-chaotic behavior for 0 < /c < 0.9. When k increases from 1, the two disjoint
chaotic attractors are dynamically connected - so that a transition from symmetry-
broken chaos to symmetric chaos is observed. On further increase of k, chaos again
gives rise to periodic, and finally, fixed point behavior.

2.3 Effect of threshold / bias

In the previous section, we have looked at the autonomous dynamics of the excitatory-
inhibitory neural pair - i.e., in the absence of any external input. We had also
assumed the threshold I to be zero. We shall now look at the effect of both of these
variables on the system variables. One of the simplifying features of the type of
activation functions we have chosen is that introducing a threshold of magnitude I
is equivalent to subjecting the system to a constant external input of amplitude l0l.
This is evident if we look at eqn. 2.72 for the case k : k' : 1, in the presence of
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Figure 2.16: Stability diagram in the a vs (bla) parameter space with ordered be-
havior indicated by black and chaotic behavior indicated by white.

o.25

0  0 . 5  1 0
k

F igure  2 .17 :  B i fu rca t ion  d iagram fo r  k :  k '  +7  a t  a :50 ,b la :0 .5
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Figure 2.18: Magnified view of bifurcation diagram for ft : k' + I at a: 50,bf a: 0.5
over the interval 0.99 < k < 1.03
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bhe saturation bias (0").Figure 2.19: (a) The critical bias (9.) and (b)

external input
2,"+1 : F,(2,, + e) - F6(2,, i A). (2.20)

An identical equation is obtained if, instead of an external input, we had introduced
a negative threshold (i.e., bias) of magnitude 0. In what is to follow, we will not
therefore differentiate between bias/threshold and a constant amplitude external in-
put. The effect of introducing a constant perturbation in simple chaotic maps, have
been previously observed to give rise to 'non-universal' behavior (i.e., the nature of
response differ from one map to another) [187, 175]

Let us first consider the case when e > 0 (we will refer to this as 'bias'). As 0
increases from 0, the map shifts to the left, and the origin, ZL : 0, is no longer a
fixed point. Two values of 0 are of interest in understanding what changes are made
to the autonomous system dynamics by this modification.

o The critical bias (0.) is the bias value at which the critical point of the one-
dimensional map (representing the dynamics of the system) is mapped to 0.
This marks the transition point from chaotic behavior to superstable cycles
(Fig.  2 .1e (a)) .

o The saturation bias (0") is the bias value at which Zi :0 again becomes a
fixed point, in fact, a stable one - i.e., for any initial value, Zs, the trajectory
terminates at Zi: 0. This occurs when the entire non-zero portion of the map
shifts to the left of the origin, so that the point Z : llb in the original map,
now coincides with the origin.

An expression for the critical bias is obtained, in the case of the asymmetric piecewise
linear transfer function, by noting that for g : 9", F"(: + e) - pr(* + e) :0. So,

e":l+!-t-
o a
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Figure 2.20: The p vs I parameter space indicating regions of (A) chaotic, (B)
superstable period cycles and (C) f ixed point (Z*:0) behavior, for a:4.

The saturation bias, 0", is given as

0" :  I lb .

These two expressions enable us to draw the (bla) vs d diagram in Fig. 2.20, showing
the regions of different dynamical behavior.

When 0 I 0, coexistence of multiple attractors of different dynamical types is ob-
served. Fig. 2.2I gives an example of the coexistence of a fixed point (Z- : 0) and
a chaotic attractor.

This allows the segmentation of activation state (X, Y)-space, according to dynamical
behavior. For initial conditions lying in the region bounded by the two straight lines,
Y : (X - e)lk and Y : (X - 0)l& - Ilak), the trajectories are chaotic, provided
the maximum point of the rnap, F(Z) : t - (kbla), does not iterate into the region
Z > 0+(I lb) For the region, Y > (X -?)lk, any iterate wil l  map to the f ixed
point, Z* : 0. Initial conditions from Y < (X - 0)l(k - Ilak) will map to the
chaotic region, if the maximum point of the map does not iterate into Z > 0+ (Ilb).
Otherwise, a fractal set of initial conditions will give rise to bounded chaotic motion,
the remaining region falling in the "escape set", eventually leading to periodic orbits.

The condition for coexistence of multiple attractors, in the case of /c : k' : 1, is
obtained as follows. The one-dimensional map equivalent to the excitatory-inhibitory
system now has an unstable fixed point at Zu:'52. Note that Z* :0 will always
be stable for any 0 <0. For two attractors to exist, the critical point of this modified
map should not belong to the basin of attraction of Zr :0, which can be written as:

F"(r-ll-,,tt-!),,,.
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0.4
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Figure 2.2I: Coexistence of fixed point (Z* :0) and chaotic attractors, with trajec-
tories in the two basins of attractions indicated, for a: 4, b : 1.5.

By simple algebraic manipulation, one obtains the following condition on the mag-
nitude of 0:

Q-b+*)@-b-r)
a -b -b ( "  -  b -  1 )

e< (2.21)

In the case of antisymmetric activation functions, for a negative 0, Zr : 0 is not
a fixed point. Rather, under the condition mentioned above, the two disconnected
chaotic attractors to be dynamically connected. This means, starting from an initial
condition which belongs to one of the chaotic attractors, it is possible to visit the
other attractor, provided the above condition is satisfied. This gives rise to hysteretic
phenomenon in the model, as 0 is monotonically increased or decreased.

Let us discuss the case of the anti-symmetric activation function given by Eqn. (2. 10) .
As mentioned before, this has two coexisting chaotic attractors, in the two halves of
the phase space: .L: (-m,0) and rR: [0,oo). In general, when 0 > 0., the trajectory
remains in the attractor in R, whereas, if e <0, it is confined to the attractor in -L.
Fig. 2.22 shows the bifurcations induced by varying d, when the initial value, Zo ) 0.
It is apparent that the trajectory falls in the attractor in .R, much before I : 0. On
the other hand, for the initial value Zs 1 0, a magnified view (Fig. 2.23) over the
interval (-0.01 <e < 0.01), shows that the trajectory remains in -L even after 6 has
become positive.

Simple hysteresis loops have been demonstrated and discussed by Harth (reviewed in

[75] and the article by Harth in [6]) in neural populations containing mostly excita-
tory elements. Wilson and Cowan [204] showed that excitatory- inhibitory networks
can show more complex hysteresis phenomena. For instance, multiple separated or
simultaneous loops are observed, which is an outcome essentially of the inclusion of
inhibition in the model.

38



-0.25
-0.25 o.z5

Figure 2.22 Bifrrcation diagram for variation of threshold 0 over the interval (-0.01,

0 .01 )  f o r  a :50 ,b f  a :0 .5  and  k : k ' : 1  ( i n i t i a l  va l ue ,  Zo>0 ) .
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Figure 2.23: Magnified view of the bifurcation diagram
interval (-0.25, 0.25) for a : 50, bf a:0.5 and k : k'  :  I

for variation of 0 over
(init ial value, Zo <0).
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Functionally, hysteresis may be a physiological basis for short-term memory. Any

sufficiently strong stimulus is going to cause the activity to jump from a low level to

a high level, and this activity will persist even after the input ceases. The existence

of hysteresis in the central nervous system, specifically in the fusion of binocularly
presented patterns to produce single vision, has also been experimentally verified.

Hysteresis has the benefit of imparting robustness against noise. A large change in the

external stimulus is needed to excite the element to a higher state, giving a threshold.

For a complex system like the brain, that is immersed in a noisy environment, the

advantage of such noise tolerance is obvious.

2,4 Extension to large networks

In the preceding sections, the behavior of a pair of excitatory-inhibitory neurons

(number of neurons, l[ : 2) was shown to have sufficient complexity. The dynamics

of a N-neuron network (,n/ >> 2) described by

Xn+r :  r( t1Y.Xo),

where X' is the set of l[ activation state values (both excitatory and inhibitory

neurons), and W is the matrix of connection weights between different neurons. The

full range of behavior shown by such a system will be impossible to study in detail,

as the number of available tunable parameters are too large to handle. However,

under certain restrictions, the dynamics of such large networks can be inferred.

Let W;1 denote the connection weight from jth to the ith neuron. Then, under the

condition

W; i+ t lW ; t : k j ,  ( k i : cons tan t  f o r  a  g i ven  j : L , " ' ,N ) ,  ( 2 ' 22 )

the N-neuron network dynamics is reducible to that of a l-dimensional map with (N*

1) linear segments (for d : 0). The occurrence of "folds" in a map have already been

shown to be responsible for creation and persistence of localized coherent structures

within a chaotic flow [162]. As in this case, the resultant map will have a number of

such folds, the system might show coexistence of multiple chaotic attractors (isolated

from each other). A simple example to illustrate this point is a fully connected

network of four neurons: two excitatory (ny,n2) and two inhibitory (y1,y2). Let

a; ald bi represent the slope of the transfer functions for the ith excitatory and

inhibitory neurons, respectively. The 4-dimensional dynamics is reducible to the

1-dimensional dynamics of z : frr - ktat * k2r2 - k*2. simulations were carried

out for the set of parameter values: (a1 : 4.6,a2 - 4.0,br : 3.6,b2 : 1.6) and
(k, :0.7,k2 - 1.0, ks : 1.1). Furthermote, t2,!2 have a threshold equal to 1/b1. Fig.

2.2a @) shows the return map and time evolution of z in the absence of any bias'

There is only a single global chaotic attractor in this case. When a small negative

bias is applied to the whole network, the previous attractor splits into two coexisting

4I



0.4 0.6 0.8
z(n)
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Figrre 2.24: The return map and time evolution of the reduced variable, z, for a

4-neuron network (for detai ls see text), with (a) bias:0 and (b) bias: - 0.15.
In the former there is a single global chaotic attractor. For non-zero bias, there
are two co-existing chaotic attractors. Time evolution of z starting from two initial
conditions belonging to different attractors are superposed.
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isolated attractors having localized chaotic activity. Which attractor the system will
be in, depends upon the initial value it starts from. Fig. 2.24 (b) shows the return
map for a bias value of -0.15 and the superposed time evolutions of z starting from
initial conditions belonging to two different attractors. So, an increase in bi?s, can
cause transition from global chaos to localized chaotic regions.

This property can be used to simulate a proposed mechanism of olfactory information
processing [53]. It has been suggested that the olfactory system maintains a global
attractor with multiple "wingstt, each corresponding to a specific class of odorant.
During each inhalation, the system moves from the central chaotic repeller to one of
the wings, if the input contains a known stimulus. The continual shift from one wing
to another via the central repelling zone has been termed as chaotic "itinerancy".
This forms the basis of several chaotic associative memory models.

The above picture can be observed in the present model by noting that, if the external
input has the effect of momentarily increasing the bias from a negative value to zero,
then the isolated chaotic regions merge together into a single global attractor. In
this condition, the entire region is accessible to any input state. However, as the
bias goes back to a small negative value, the different isolated chaotic attractors re-
emerge, and the system dynamics is constrained into one of these. Sustained external
stimuli will cause the gain parameters to decrease (adaptation), thereby decreasing
the local slope of the map. If the stimulus is maintained, the unstable fixed point in
the isolated region will become stable leading to a fixed-point or periodic behavior.
The above scenario, in fact, is the basis of using the proposed model as an associative
memory network.

2.5 Information processing with chaos

Chaotic dynamics enables the microscopic sensory input received by the brain to
control the macroscopic activity that constitutes its output. This occurs as a result
of the selective sensitivity of chaotic systems to small fluctuations in the environment
and their capacity for rapid state transitions. On the other hand, chaotic attractors
are globally extremely robust. These properties indicate that the utilization of chaos
by biological systems for information processing can indeed be advantageous. It
has been suggested, based on investigations into cellular automata, that complex
computational capabilities emerge at the "edge of chaos" [109].

Based on this notion, efforts are on to use chaos in neural network models to achieve
human-like information processing capabilities. Chaotic neural networks have been
already been applied in designing associative memory networks [96] and solving com-
binatorial optimization problems, using chaos to carry out an effective stochastic
search [94]. The superposition of chaotic maps for information processing has also
been suggested before [10, 9].

The model presented in this chapter can be used for a variety of purposes, classified
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as follows:

Associative memory: A set of patterns (i.e., specific network state configurations)
are stored in the network as attractors of the system dynamics, such that, whenever
a distorted version of one of the patterns is presented to the network as input, the
original is retrieved upon iteration. The distortion has to be small enough so that
the input pattern is not outside the basin of attraction of the desired attractor.
In networks using convergent dynamics, the stored patterns necessarily have to be
time-invariant or at most, periodic.

Chaos provides rapid and unbiased access to all attractors, any of which may be
selected on presentation of a stimulus, depending upon the network state and ex-
ternal environment. It also acts as a "novelty detector", classifuing a stimulus as
being previously unknown, by not converging to any of the existing attractors. This
suggests the use of chaotic networks for auto association.

In the previous section, the basic mechanism for constructing an associative memory
network has been described. In this proposed model, both constant and periodic

sequences can be stored. This is made possible by introducing "folds" in the return
map of the network, so that a large number of isolated regions are produced. The
nature of the dynamics in a region can be controlled by altering the gain parameters

of individual neurons. Accessibility to a given attractor depends upon the initial
condition of the network and the input stimulus. So, regions with fixed-point or
periodic attractors may be embedded within regions having chaotic behavior. In

addition, chaotic trajectories confined within a specific region can also be generated

when presented with a short-duration input stimulus belonging to that region. "Nov-
elty detection" is implemented in the above model by making the basins of attractors
(corresponding to the stored patterns) of some pre-specified size. Input belonging
outside the region, therefore, cannot enter the basin and will not be able to converge

to the stored pattern.

Pattern classification: In this information processing task, different input sets
need to be classified into a fixed number of categories. Decision boundaries, i.e.,
boundaries between the different classes are constructed by a "training session" where
the network is presented with a series of inputs and the corresponding class to which
they belong. In the proposed model, classification can be on the basis of dynamical
behavior. For example, input sets belonging to different input classes may give rise
to different periodic sequences. Otherwise, the distinction can be made between
categories of inputs which give rise to chaotic and non-chaotic trajectories. For a pair
of neurons (l[ : 2), under the condition k : ft', linear separation of the (X, Y)-space
can be done (as shown above). By varying the parameters ft and b the orientation
and size of the class regions can be controlled. If k + ft' and N ) 2, nonlinear
decision boundaries between different classes can be generated. By using suitably
adjusted weights, any arbitrary classification can be achieved.

An example of nonlinear decision boundary generation is shown in Fig. 2.25. The
network used for this purpose consists of 4 neurons - 2 excitatory (*r,*r) and 2
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( a )

Figure 2.25: (a) A fully connected 4-neuron network with 2 excitatory (n1,2) arrd 2

inhibitory (yr,r) o"orons. The arrows and circles represent excitatory and inhibitory

synapses) respectively. (b) The (nt,rz) phase space shows the basin of the chaotic

attractor (shaded region) for threshold, 9:0.25. The unshaded region corresponds

to fixed point behavior of the network.

inhibitory (yr,A) (Fig. 2.25 (a)) with asymmetric, piecewise linear activation func-

tions. The gain parameters are arl,x:, : 2 and br,,r, : 1. All the neurons have a

threshold, d. The network is fully connected with all weightages equal to unity. The

input stimulus is taken to be the initial value of the excitatory neurons and the

inhibitory neuronal states are initially taken to be zero.

As shown in Fig. 2.25 (b),f.or 0:0.25, the (r1,12) phase space is segmented into

basins leading either to fixed point or to chaotic attractors. By increasing 0, the

width of the chaotic band can be reduced. Changing the initial value of the inhibitory

neurons will cause translation of the band and manipulating the connection weights

gives a rotation to the band. Thus, any general transformation can be applied to

the segment. More complex network connections might permit segmenting isolated

box-like regions in the phase space. This possibility is currently under investigation'

System Dynamics Approximation: A system may be described by a nonlinear

input-output relation,
Y  :  G(X) ,

where the mapping functioo, G, is unknown. By having access to a limited set of

input-output pairs, the function has to be approximated - in effect, building a sys-

tem simulator. Jin et al have proposed a discrete-time recurrent neural network

[97], which is non-chaotic but similar to the present model, in order to approximate

discrete-time systems [98]. In the present model, a sufficient number of coupled neu-

rons can be used to construct any arbitrary piecewise linear input-output relation.

By use of a suitable learning rule, the available data set can be used to determine the

(b )
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gain parameters, thresholds and connection weights of the network. A close approxi-
mation of the system dynamics will enable prediction and control of its behavior. The
approximation's accuracy is not restricted to systems with piecewise linear functions
- but can also give good qualitative reconstruction of smooth nonlinear systems.

Periodic sequence generation: Capability for periodic sequence generation can
be exploited for modeling central pattern generators. These are a class of bi-
ological neural ensembles which control well-defined rhythmic muscle movements
such as swimming, running, walking, breathing, etc. Usually they are found in the

spinal cord, producing periodic sequences without feedback from the motor system
or higher-level control. The ability to generate multiple sequences from the same
neural assembly is another interesting feature. Postulating the existence of single
pacemaker neurons acting as the 'system clock' to initiate periodic activity cannot
explain all the observed phenomena. The existing network models for simulating this
behavior mostly suffer from the drawback that they cannot generate multiple non-
overlapping sequences. This shortcoming is overcome in the model presented here.
For l{ : 2 and k -- k' I I, a rich variety of periodic sequences can be chosen from
the same network, simply by altering the gain parameters by a very small amount.
As mentioned above, numerical investigations indicate that cycles of any period can

be generated by suitably altering the value of fr.

2.6 Discussron

One notable feature of our investigations is the existence of the wide range of dynam-

ical behavior in the simple system of a coupled neuron pair, which has been observed

with a variety of nonlinear activation functions. In addition to the functions con-

sidered here, other types of nonlinear activation functions, e.g., F"(z) : tanh(zla)
and F,(z): 2 arctan(rl") also show qualitatively similar features. In this context,
it may be remarked that a related form of activation function: F"(z) : ,*#C;a
has been shown to be topologically conjugate to the chaotic logistic map by Wang

[197]. The universality of the observed dynamical features argue strongly that the

observations reported here are not merely artifacts of the specific type of function
chosen, but in fact, have a broader relevance.

As mentioned previously, we have not considered delayed interactions in our model.
The introduction of delays in a neural system can produce qualitatively different
behavior. Such effects have been observed in continuous-time [16] and discrete-time

[116, 43] updated neural networks. A particularly simple form of delay, viz., an
unbounded, exponentially decreasing delay is amenable to simple theoretical analysis

[39]. Including this type of delayed interaction in our model shows no new qualitative

features. However, other types of delay might produce new, interesting behaviors in
the system.

To summarize, the behavior of an excitatory-inhibitory neural pair has been studied
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in detail for l[ : 2 (where .ly' is the number of neurons). Nonetheless it shows
capability for supporting extremely complex behavior. Under certain restrictions,
the dynamics for ltr >> 2 networks can also be understood. Relaxation of these
restrictions will provide a challenging task for the future.
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