Systems Biology Across Scales: A Personal View XXV. Waves in Biology: Excitable Media

Sitabhra Sinha IMSc Chennai Turing's model for pattern formation is a specific example of

Reaction-Diffusion Equations

Activator: $\partial u / \partial t = D_u \Delta u + f(u,v)$ Inhibitor: $\partial v / \partial t = D_v \Delta v + g(u,v)$

For Turing patterns to occur, $D_u < D_v$

What is Excitable Media ?

... that biology should be mindful of it ?

- pancreatic beta cells
- neurons
- cardiac myocytes
- pregnant uterus

What is Excitable Media ?

Think of an excitable person

Resting State

Excited State

Transition from resting to excited state if stimulation exceeds a threshold

Immediately after one excitation, the medium cannot be excited even by a very high stimulus for a resting (refractory) period A simple model

Phase plane dynamics of the simple model

Below threshold \rightarrow decays to resting state Above threshold \rightarrow excitation (large excursion from stable resting state). This simple model is none other than the

Fitzhugh-Nagumo model

$$\frac{du_e}{dt} = F_e(u_e, v) = Au_e(u_e - \alpha)(1 - u_e) - v,$$
$$\frac{dv}{dt} = \epsilon(u_e - v),$$

Developed by R Fitzhugh (1961) [who called it the Bonhoeffer-Van der Pol model] and J Nagumo (1962) to isolate the essential concepts of excitation propagation

Richard Fitzhugh: Simplified the Hodgkin-Huxley equations describing spike generation in squid giant axon

Jin-ichi Nagumo: built monostable multivibrator electronic circuit using tunnel (Esaki) diodes Esaki diodes have cubic I-V curve similar to that used in Fitzhugh's eqn

Tokyo U

Spatial propagation of excitation waves

Example: Cardiac tissue

functions as a syncytium: constituent cells are electrically synchronized through specialized channels called gap junctions

Delay in spread of depolarization to neighboring cells via gap junctions ... but usually the discrete nature of cardiac myocytes can be ignored and propagation of excitation assumed to be continuous.

Mathematically approximated as a **diffusion equation** yielding the partial differential equation $\partial V = \partial^2 V = I_{ion}$

$$\frac{\partial \mathbf{v}}{\partial t} = D \, \frac{\partial^2 \mathbf{v}}{\partial x^2} - \frac{I_{ion}}{C_m}$$

with diffusion constant $D = \frac{G_i}{S_v C_m}$

 G_i : Bulk intracellular conductivity S_v : Surface to volume ratio of cells C_m : Membrane capacitance

Biological tissue is anisotropic \Rightarrow D is a tensor E.g., action potentials travel along the direction of muscle fibers much faster than transverse to it

Microscopic anatomy of cardiac muscle

Nucleus Intercalated discs Cardiac muscle cell Gap junctions Fasciae adherens Cardiac muscle cell Mitochondrion Intercalated Nucleus disc Mitochondrion T tubule Sarcoplasmic reticulum Nucleus Sarcolemma (b)

http://antranik.org/

Gap junctions formed by assembly of connexin proteins

connexon: assembly of six connexin proteins forming the pore for a gap junction between cytoplasm of a pair of connected cells – allowing bidirectional flow of ions and signaling molecules gap junction

Connexin structure

Example: one-dimensional chain of cells

Nearest neighbors connected by gap junctions

 V_n : transmembrane potential of n-th cell

 I_n : current from the n-th to the (n-1)-th cell

The net current that passes through gap junctions of the n-th cell: $I_{junction} = I_n - I_{n+1} = g_{gap}(V_n - V_{n-1}) - g_{gap}(V_{n+1} - V_n)$

where g_{gap} : gap-junction conductance

Using continuum approximation,

$$I_{junction} = -g_{gap} \frac{\partial^2 V}{\partial x^2}$$

yielding the partial differential equation describing spatial diffusion of excitation $C_m \frac{\partial V}{\partial t} = -I_{ion} - I_{junction} = g_{gap} \frac{\partial^2 V}{\partial r^2} - I_{ion}$

Propagating Waves in Excitable Media

•Excited cells can excite their neighboring cells via diffusion

•The propagating excitation waves can collide and annihilate each other

... resulting in spontaneous pattern formation, such as single or multiple spiral waves

