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Oscillations in the Chlorine dioxide-Iodine-Malonic Acid 

(ClO2-I2-MA) reaction 

Strogatz, 1994 

MA, I2 and ClO2 vary much more slowly than the intermediate I and ClO2
 

which change by several orders of magnitude during an oscillation period 

Oscillating Chemical Reactions After BZ 



ClO2-I2-MA reaction oscillations 

Approximating the concentrations of the slow reactants as constants the 

system can be reduced to the two-variable model (in non-dimensional form) 

[Note: the approxn neglects the 

slow consumption of the reactants 

– so unable to show the eventual 

approach to equilibrium]  

For I For ClO2
  

The nullclines give a general idea of 

the overall flow properties of the 

system 

Strogatz, 1994 



Hopf bifurcation in ClO2-I2-MA reaction  

As b is decreased below a critical value  

bc = (3a/5) – (25/a) 

The fixed point x* = a/5, y* = 1 + (a/5)2 is 

destabilized – changes from a stable spiral to 

an unstable spiral – giving rise to a limit cycle 

through supercritical Hopf bifurcation 



Hopf bifurcation  
Bifurcation in which a fixed point and a periodic solution changes stability 

Strogatz, 1994 

Supercritical Hopf Bifurcation:  As a parameter  is varied, a stable fixed 

point loses stability at a critical value c and a stable oscillatory solution (limit 

cycle) comes into existence whose amplitude increases as  is changed further 

The complex eigenvalues 

change sign of the real part 

at the Hopf bifurcation 

stable fixed point limit cycle 



Example of biological oscillations: Glycolysis 

 Glycolysis (“splitting sugars”) takes place in cytoplasm  

Metabolic process in which a molecule of glucose is converted to 

2 molecules of pyruvate, yielding 2 molecules of ATP and 2 

molecules of NADH. 

 Pyruvate is then used in the Kreb cycle. 



Glycolytic oscillations in Yeast  

Glycolytic oscillations in a yeast extract subjected to constant injection of the 

substrate (trehalose). 

Hess & Boiteux (1968) In Regulatory Functions of Biological Membranes. Ed. J. Jarnefelt, Elsevier. 

Hess B, Boiteux A, Krüger J (1969) Cooperation of glycolytic enzymes. Adv Enzyme Regul. 7:149-67 



Strogatz, 1994 

dx/dt = – x + ay + x2y  

dy/dt = b – ay – x2y  

Modeling Glycolytic oscillations 
Sel’kov’s dimensionless equations (1968) 
x: concentration of ADP (adenosine diphosphate)  

y: concentration of F6P (fructose-6-phosphate)  

y-nullcline 

x-nullcline 



How to show that periodic solutions (closed orbits in phase space) 

exist in particular systems ?  

Poincare-Bendixson Theorem  
 

 

 

Suppose that:  
(1) R is a closed, bounded subset of the 

plane;  

(2) dx/dt = f (x) is a continuously 

differentiable vector field on an open set   

containing R;  

(3) R does not contain any fixed points; 

and  

(4) There exists a trajectory C that is 

“confined” in R, in the sense that it starts  

in R and stays in R for all future time. 

 

Then either C is a closed orbit, or it spirals  toward a closed orbit 

asymptotically (i.e., t  ). In either  case, R contains a closed 

orbit. 

Strogatz, 1994 



To apply the Poincare-Bendixson Theorem  

construct a trapping  region R  

i.e., a closed connected set such that the vector field points “inward” 

everywhere on boundary of R such that all trajectories in R are 

confined 
Consider dx/dt and dy/dt in the limit of very large x, such that  

On the horizontal & vertical 

sides,  there's no problem – 

tricky part is the diagonal 

Strogatz, 1994 



There is a fixed point in the region (at the intersection of the nullclines), 

and so the conditions of the Poincare-Bendixson theorem are not 

satisfied.  

But if this fixed point is a repeller, then we can prove the existence of a 

closed orbit by considering the modified "punctured" region (an 

infintesimal hole around the fixed point)  

 

The repeller drives all neighboring 

trajectories into the shaded region, 

and since this region is free of fixed 

points, the Poincare-Bendixson 

theorem applies.  

 

So we only need to find the conditions 

under which the fixed point is a 

repeller.  

Strogatz, 1994 



To find the stability of the fixed point evaluate the Jacobian 

about the fixed point  

The stability-instability boundary is  

Oscillations in Glycolysis 

Strogatz, 1994 


