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Modeling how epidemics spread

E.g., can be based on Lotka-Volterra predator-prey dynamics

Growth rate of prey: dX/dt =a X —-b XY
Growth rate of predator: dY/dt = ¢ XY —dY

The earliest mathematical model of epidemic spreading
Malaria: Ronald Ross (1909),
modified by George MacDonald (1950-3) Ronald Ross

(1857-1932)

For a vector-borne disease
Infected humans X: dX/dt=abY (N-X)-gX
Infected mosquitosY: dY/dt=ac X (M -Y) —-dY

a: biting rate per human per mosquito b,c: mosquito to human &
human to mosquito transmission probability per bite
g: recovery rate of humans N: total number of humans

d: death rate of mosquitos M: total number of mosquitos



A Simple Model of Epidemic Dynamlcs

Modeling spreading by direct contact (SIR model)
Kermack-McKendrick (1927)

W O Kermack
(1898-1970)

Under assumption of homogeneous mixing, ﬁgzlc;:;)drick
i.e.,anyone is equally likely to infect anyone else:

Susceptible population :dS/dt = -3 S|
Infected population:  dl/dt=p3SI- vyl

x10°

Susceptible
SIR Model
1/g = 5 days
R=18

Infected

—> Epidemic :dl/dt > 0, i.e,S(t=0)>y /3

B : rate of infection spreading

Y : recovery rate (= [avg infectious period, 1]
S (t = 0) = N, the total population IR
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An important parameter: effective reproduction number R(t), the
average number of new infections per infected person
—Epidemic if basic reproduction number R, =R (t=0) =N [ t > |
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Utility of R, : Estimating the final size

Fin:-il size equation:
z=1-exp(zR;)
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An individual that is susceptible at time tp and experiehces a force of infection A(t)
for t > tp will escape from being infected with probability F(t) defined by

dF _ _ e
:lffjf(t:):f}==~J“(t)=e Jy Mryar

For large populations we shall have s(co) = F(oc), i.e. the fraction that remains
susceptible equals the probability to remain susceptible. Let us call f: M) dr the

total cumulative force of infection. The fraction z = 1 — s(o0) that falls victim to the
infection generates a total cumulative force of infection equal to

-;-r-pcATzN = Ryz

(we have to divide by N since contacts are with probability 1/N with the susceptible
individual that we consider). Hence

s(o0) = Foo) = B—Roll-a(m)]‘

Diekmann & Heesterbeek, 2000

The final size of the epidemic z is the proportion of population
which will experience infection by the end of the epidemic.
Given by the implicit equation:z = | —exp (z Ry)

Can be solved graphically

For R, = |.45, we obtain z = 55%



Utility of R, : Minimum immunization
coverage required to stop epidemic

Let us recall the SIR model equation: dl/dt =3 SI — vy |

—> To stop epidemic we need to make dl/dt <0, i.e,,S(t=0) <vy/f3
where

B : rate of infection spreading

v: recovery rate (= [avg infectious period, 1]')

Let total population be N
Thus, proportion of the population that is susceptible, s = S(t=0)/N

needs to be made smaller than I/(Npt) = I/R, (because R, = N [37)

—>The fraction of population that needs to be immunized to stop
the epidemic (assuming homogeneous mixing) is p > |- (1/Ry)

For R, =1.45,p,., = 31%



Basic reproduction number R,

Mean number of new infections caused by a single infectious
individual in a wholly susceptible population (as in the beginning of
an epidemic): If each infected person on average infects more than
one other individual, R, > | = Epidemic

Initially the epidemic may die out due to stochastic fluctuations, but
once established it grows exponentially until the pool of susceptible
individuals is exhausted
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Estimating basic reproduction number R,

A frequently used approach is

* to fit an exponential function to the incidence data to obtain
the exponential growth rate A, and,

* to use the approximate relation Ry ~ exp ( A1, ) where 1, is the
observed mean generation interval of the epidemic (defined as
“the sum of the average latent and the average infectious period”
[Anderson & May, 1991])

For small At, we can further approximate R, ~ |+ Az,
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Stochastic SIR dynamics

Transmission of infection and recovery are essentially stochastic processes
The deterministic SIR model does not account for fluctuations, particularly
important at the beginning of an epidemic when | is small

The stochastic infection dynamics:

o infection rate
B: recovery rate

a
Infection:S + 1 — 2I Recovery:1 - 0

Quantity of interest: probability of finding S susceptibles and [ infected in a
population of size N at timet, p (5,1, t)
The master equation for the evolution of this probability :

Y - .
dp(S. I 1) = -’\_-"("; + D= pS+1,1—-1;. +pBUI+1)pS. I+ 1:1)

X
With initial condition N ~_s¥'w‘” N ’BI_; P, L 1)
,_r.;l_(S. [:t = to) = 3;,1(_3.35“-&-'—;01
In the limit of large N, this approaches the deterministic SIR model results
because the fluctuations decay as 1/ VN



Going beyond the assumptions of homogeneous mixing

Homogeneous mixing: any agent is equally likely to infect any other agent

In reality,
(A) social relations and (B) physical or geographical proximity,
make some people more likely to be infected than others

Important to consider either or both of these effects in any
realistic model of epidemic spreading

(A): role of contact structure (spreading through a network)
(B): role of space (diffusion of an epidemic front)



Epidemic spreading on WS networks

Watts & Strogatz: SIR dynamics on small-world network

Epidemics spread much faster on WS networks than an
equivalent regular network — and far more difficult to control by
partial removal of nodes than on a random network !

The shortcut links make the transport process fast

Unlike a random network, where every node is more or less
equivalent, so that removing a certain fraction of susceptible
agents (making R < |) ensures the epidemic dies, here the few
nodes that are terminals of shortcut links are principally
responsible for rapid transit of infection

For efficient control of epidemic on WS networks, necessary to
identify the “shortcuts” and preferentially control those
In the context of STD or AIDS:“Control the truck drivers”



No threshold for epidemics in
scale-free networks

Networks of sexual relations have been claimed to be scale-free !

A few highly promiscuous individuals act as “hub” nodes
May play a crucial role in spreading sexually transmitted diseases !

If the contact structure of a disease is network with inhomogeneous

degree distribution, the condition for occurrence of an epidemic is:
Ry =BN/y > <k>/<k?>

Initial popn of susceptibles, S(t = 0) = N, the total population

For a scale-free network having degree exponent 2 <a <3, <k?> —o
—There is no epidemic threshold !

Even diseases with extremely low transmission probabilities are likely
to cause a major outbreak involving a signficant fraction of population



The role of long-distance transportation networks

Influenza pandemics 1700-2000
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The influenza pandemic of 1918-1920

First outbreaks () March 1918 il

lines of spread of first wave (----»)
f

i ) . {
focal points of second wave (@),

are virulent
_ . . Nicholson et al, Textbook of Influenza (1998)
lines of spread of second wave (—)

numbers of month after March 1918 (()) when epidemic infection was recorded (number accompanies arrow)



The influenza pandemic of 1957-1958

Nicholson et al, Textbook of Influenza (1998)
Point of origin (M) February 1957 lines of spread of pandemic (—)

number of months after February 1957 (0) when epidemic infection was recorded (number accompanies corresponding arrow)



Worldwide spread of SARS through international airline network
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Epidemic spreading via Networks

Can be described by SIR model with non-local diffusion operator
Infected population in j-th community: 0 L/0t=BS -yl +Q {l})
We assume homogeneous mixing within a community

The network of interactions describing €2 could be
(depending on the scale of description one is interested in)

*The world-wide air-transportation network (the communities being the
population of the urban agglomeration being served by an airport)

*The rail-road-air network of a country

*The local transport within a district

The network may be strongly heterogeneous in terms of connection topology
(e.g., the number of links for a given node may differ for a “hub” and a “leaf”) ,
distribution of transport density along each connection and size of the different
communities



Using the Global Aviation Network to forecast SARS spreading
Hufnagel et al, PNAS 101 (2004) 15124

Model = local stochastic SIR infection dynamics +
global transport along international civil

The close match between
predicted & observed
spreading of SARS

—> model can be used to
forecast how disease will
spread if the initial infection et NenShsi
begins elsewhere

Focus: London




On a smaller scale, we can fruitfully combine network
approach with spatial or geographical information about
location of agents/infection “hotspots” to understand the
evolution of epidemics

a b Gp

Eubank et al: Agent-based model (EPISIMS)
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Spread of SARS in Contagion propagation in populations

Taiwan, 2003 through contact in specific locations
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Contact network analysis
put in a spatial context

Straightforward contact network analysis often
looks only at the set of inter-personal contacts
between infected agents

However, bi-partite graphs — comprising both
agent nodes and location nodes — may explain
better the evolution of disease along the contact - m. o2 o
network )
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Incorporating geographical / spatial information in network modeling
helps reveal nodes acting as bridges for disease transfer between

- communities
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