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Modeling how epidemics spread 
E.g., can be based on Lotka-Volterra predator-prey dynamics 

 

Growth rate of prey:  dX/dt = a X – b XY 

Growth rate of predator:  dY/dt = c XY – dY 

 

The earliest mathematical model of epidemic spreading 

Malaria: Ronald Ross (1909),  

modified by George MacDonald (1950-3) 

 

For a vector-borne disease 

Infected humans X:  dX/dt = ab Y  (N – X) – g X 

Infected mosquitos Y:  dY/dt = ac X (M – Y) – dY 

 

a: biting rate per human per mosquito        b,c: mosquito to human &   

                         human to mosquito transmission probability per bite 

g: recovery rate of humans                        N: total number of humans 

d: death rate of mosquitos                     M: total number of mosquitos 

Ronald Ross 

(1857-1932) 

1902 



A Simple Model of Epidemic Dynamics 
Modeling spreading by direct contact (SIR model) 

Kermack-McKendrick (1927)  

 

Under assumption of homogeneous mixing,  

i.e., anyone is equally likely to infect anyone else: 

Susceptible population : dS/dt = –   S I 

Infected population :      dI/dt =  SI –  I      

 

 Epidemic : dI/dt > 0,  i.e., S(t=0)>  /   

 : rate of infection spreading 

 : recovery rate (= [avg infectious period, ]-1) 

S (t = 0) = N, the total population 

 

An important parameter: effective reproduction number R(t), the 

average number of new infections per infected person 

Epidemic if basic reproduction number R0 = R (t=0) = N   > 1 

W O Kermack 

(1898-1970) 

A G McKendrick 

(1876-1943) 



Utility of R0 : Estimating the final size 

Diekmann & Heesterbeek, 2000 

The final size of the epidemic z is the proportion of population 

which will experience infection by the end of the epidemic. 

Given by the implicit equation: z = 1 – exp (z R0)  

Can be solved graphically 

For R0  1.45, we obtain z  55% 



Utility of R0 : Minimum immunization 

coverage required to stop epidemic  

 

Let us recall the SIR model equation:  dI/dt =  SI –  I      

 To stop epidemic we need to make dI/dt < 0,  i.e., S(t=0) <  /   

where 

 : rate of infection spreading 

: recovery rate (= [avg infectious period, ]-1) 

 

Let total population be N 

Thus, proportion of the population that is susceptible, s = S(t=0)/N 

needs to be made smaller than 1/(N) = 1/R0 (because R0 = N ) 

 

The fraction of population that needs to be immunized to stop 

the epidemic (assuming homogeneous mixing) is p > 1- (1/R0)  

For R0 1.45, pmin  31% 



Basic reproduction number R0 

Hollingsworth, J Pub Health Policy, 2009 

R = 1.75 
Characteristic 

uncontrolled 

outbreak 

R0 >1 

Mean number of new infections caused by a single infectious 

individual in a wholly susceptible population (as in the beginning of 

an epidemic): If each infected person on average infects more than 

one other individual, R0 > 1  Epidemic 

 

Initially the epidemic may die out due to stochastic fluctuations, but 

once established it grows exponentially until the pool of susceptible 

individuals is exhausted 

Epidemic with 

discrete generations 



Estimating basic reproduction number R0 

A frequently used approach is  

• to fit an exponential function to the incidence data to obtain 

the exponential growth rate ,  and, 

• to use the approximate relation R0  exp ( g ) where g is the 

observed mean generation interval of the epidemic (defined as 

“the sum of the average latent and the average infectious period” 

[Anderson & May, 1991]) 

For small g we can further approximate R0  1+ g  

Hollingsworth, J Pub Health Policy, 2009 



Stochastic SIR dynamics 

The stochastic infection dynamics: 

 

Infection: S + I  2I           Recovery: I  0 
  

Transmission of infection and recovery are essentially stochastic processes 

The deterministic SIR model does not account for fluctuations, particularly 

important at the beginning of an epidemic when I is small 

: infection rate 

: recovery rate 

Quantity of interest: probability of finding S susceptibles and I infected in a 

population of size N at time t,  p (S, I, t) 

The master equation for the evolution of this probability : 

With initial condition 

In the limit of large N, this approaches the deterministic SIR model results   

because the fluctuations decay as 1/√N 



Going beyond the assumptions of homogeneous mixing 

Homogeneous mixing: any agent is equally likely to infect any other agent 

In reality,  

(A) social relations and (B) physical or geographical proximity,  

make some people more likely to be infected than others 

 

Important to consider either or both of these effects in any 

realistic model of epidemic spreading 

 

(A): role of contact structure (spreading through a network) 

(B): role of space (diffusion of an epidemic front) 



Watts & Strogatz: SIR dynamics on small-world network 
 

Epidemics spread much faster on WS networks than an 

equivalent regular network – and far more difficult to control by 

partial removal of nodes than on a random network ! 

Epidemic spreading on WS networks 

The shortcut links make the transport process fast  
 

Unlike a random network, where every node is more or less 

equivalent, so that removing a certain fraction of susceptible 

agents (making R < 1) ensures the epidemic dies, here the few 

nodes that are terminals of shortcut links are principally 

responsible for rapid transit of infection 

 

For efficient control of epidemic on WS networks, necessary to 

identify the “shortcuts” and preferentially control those 

In the context of STD or AIDS: “Control the truck drivers” 



No threshold for epidemics in  

scale-free networks 

 Networks of sexual relations have been claimed to be scale-free ! 

A few highly promiscuous individuals act as “hub’’ nodes 
May play a crucial role in spreading sexually transmitted diseases ! 

If the contact structure of a disease is network with inhomogeneous 

degree distribution, the condition for occurrence of an epidemic is: 

           R0 = N /    >    <k> /<k2> 
Initial popn of susceptibles, S(t = 0) = N, the total population 

 

For a scale-free network having degree exponent  2 <3, <k2> 

There is no epidemic threshold ! 

 

Even diseases with extremely low transmission probabilities are likely 

to cause a major outbreak involving a signficant fraction of population  



Influenza pandemics 1700-2000 

 The role of long-distance transportation networks 



The influenza pandemic of 1918-1920 

Nicholson et al, Textbook of Influenza (1998) 
more virulent 



The influenza pandemic of 1957-1958 

Nicholson et al, Textbook of Influenza (1998) 



Worldwide spread of SARS through international airline network 



Can be described by SIR model with non-local diffusion operator 

 

Infected population in j-th community:       Ij / t =  Sj Ij –  Ij + j ({ Ij }) 

 

We assume homogeneous mixing within a community 

 

The network of interactions describing  could be 

(depending on the scale of description one is interested in) 

 

•The world-wide air-transportation network (the communities being the 

population of the urban agglomeration being served by an airport) 

 

•The rail-road-air network of a country 

 

•The local transport within a district  

Epidemic spreading via Networks 

The network may be strongly heterogeneous in terms of connection topology 

(e.g., the number of links for a given node may differ for a “hub” and a “leaf”) , 

distribution of transport density along each connection and size of the different 

communities  



Using the Global Aviation Network to forecast SARS spreading 
Hufnagel et al, PNAS 101 (2004) 15124 

Model = local stochastic SIR infection dynamics + 

              global transport  along international civil                    

              aviation network, links weighted by passengers 

Global Aviation Network 

Observed 

Model prediction 

Focus: London Focus: New York 

The close match between 

predicted & observed 

spreading of SARS  

 model can be used to 

forecast how disease will 

spread if the initial infection 

begins elsewhere 



On a smaller scale, we can fruitfully combine network 

approach with spatial or geographical information about 

location of agents/infection “hotspots” to understand the 

evolution of epidemics 

Eubank et al, Nature 429 (2004) 180 

Eubank et al: Agent-based model (EPISIMS) 

to generate bipartite network of individuals 

and locations 

 

The corresponding individual contact 

network is not scale-free degree distributed, 

but the location network is ! 

 Importance of locations (“hotspots”) in 

spreading infection 



Spread of SARS in 

Taiwan, 2003 

Contagion propagation in populations 

through contact in specific locations 

Chen et al, Lect Notes Comp Sci 4506 (2009) 23 

Area 

Hospital 

Confirmed     

         SARS  

      patient 

Suspected     

         SARS  

      patient 

 

961 patients, 

22 areas,  

14 hospitals 

1313 links 



Straightforward contact network analysis often 

looks only at the set of inter-personal contacts 

between infected agents 

 

However, bi-partite graphs – comprising both 

agent nodes and location nodes – may explain 

better the evolution of disease along the contact 

network 

 

Contact network analysis  

put in a spatial context 

Infection jumps from one to other at specific “high-risk” locations (hub location nodes) 

Chen et al, Lect Notes Comp Sci 4506 (2009) 23 



Incorporating geographical / spatial information in network modeling 

helps reveal nodes acting as bridges for disease transfer between 

communities 

Betweenness centrality (BC) measures 

can reveal individuals/locations  

acting as key bridges among 

households, 

hospitals and  

different regions in  

the contact network 

Node BC and Edge BC 

provide complementary 

information on key agents and 

connections helping in 

spreading the disease 

 

Can provide targets for 

control measures 

Chen et al, Lect Notes Comp Sci 4506 (2009) 23 


