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• neurons ~ 10 11

• connections ~ 10 14

The brain as a network of neurons 

• neurons ~ 300

• connections ~ 3000

(synaptic ~ 2500, gap junctions ~ 500)

Caenorhabditis elegans nematode nervous system

The human brain



Can we understand its workings by treating the mammalian brain as 

a very large network of neurons ?

H Markram Nature Rev Neurosci (2006)



Churchland and Sejnowski’s classic diagram of levels in the neurosciences 



The spatiotemporal domain of neuroscience and of the main 

methods available for the study of the brain 

Sejnowski, Churchland & Movshon, Nature (2014) 



Dynamics on networks 

Image: quora.com

Chemical 

communication: 

Synaptic 

(excitatory and 

inhibitory) 

Electrical communication: 

gap junction 
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Image: Troy and Shou, Prog. Ret. Eye Res. 21 (2002)
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Lateral inhibition
Edge detection in vision Difference of 

Gaussians

(“Mexican hat”)

Difference of Gaussians Filter

Network Motif implementing Center-

Surround principle:
stimulation of cells in central region and 

those in surrounding regions having 

opposing responses to excitation of 

neurons downstream

Implements a “Mexican hat” function that 

can compute the smoothed Laplacian of the 

stimulus (e.g.,  an image)



synaptic arrangement underlying organization of receptive fields of the retina in ON 

and OFF regions.

Receptive fields
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ON-centre and OFF-centre cells

• responds to a spot of light in 

central part of receptive field 

• inhibited by illumination of 

peripheral region of the field

Illumination of the entire receptive field causes only slight increase in activity

• excited by a spot of light in

peripheral part of receptive field 

• inhibited by central illumination
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Stephen W Kuffler

(1913-1980)
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The logical calculus of nervous activity

Warren S. McCulloch (1898-1969) Walter H Pitts (1923-1969)

“[They recognized that] the laws governing the embodiment of mind should be sought 

among the laws governing information rather than energy or matter.” 

Seymour Papert
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The alphabet of human thought
Reducing human reasoning to calculation

In the early 18th century, Leibniz provided an outline for a characteristica universalis

An artificial language in which each letter (a pictographic character) would represent 

a concept.  

Image:quadriformisratio.files.wordpress.com/

These could be then combined and manipulated according 

to a set of logical rules to compute all knowledge.



https://www.theguardian.com/

George Boole 

(1815-1864)

The laws of thought

“…to investigate the fundamental laws 

of those operations of the mind by 

which reasoning is performed; 

to give expression to them in the 

symbolical language of a Calculus, and 

upon this foundation to establish the 

science of Logic and construct its 

method … 

… and, finally, to collect from the 

various elements of truth brought to 

view in the course of these inquiries 

some probable intimations concerning 

the nature and constitution of the 
human mind.”

An Investigation of the Laws of Thought (1854)



Bertrand Russell 

(1872-1970)

Alfred North Whitehead 

(1861-1947)

Logical calculus: 
The automation of thought

Principia Mathematica (1910-1913) of Whitehead 

and Russell provided a model by attempting to 

derive the entire body of mathematical knowledge 

by using logical operations such as 

• Conjunction (AND)

• Disjunction (OR)

• Negation (NOT)

on a set of simple propositions 

(either TRUE or FALSE) 

McCulloch
A neuron fires when the signals received 

from its neighboring cells exceed a 

threshold, else it is at rest  binary state 

(ON/OFF  TRUE/FALSE)

• Signal: proposition

• Neurons: logic gates (e.g.,  AND)

• Varying threshold: Different logic gates
Image: flickr.comImage: pinterest.co.uk

Im
ag

e
: 
.r

ap
ti
sr

ar
e
b
o
o
k
s.

co
m



The McCulloch-Pitts neuron
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The McCulloch-Pitts network
Circuits implementing computational logic
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Each unit is activated iff its total excitation  0. 

Positive weights: “excitatory’” synapses, negative weights: “inhibitory” synapses 

open circles: excitatory neurons; filled circles: inhibitory neurons

Connection weights Connection weights

Connection weight



Perceptron
The first neural network

Learning  modifying 

the connection weights

Frank Rosenblatt (1928 –1971)
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From: F Rosenblatt, The Design of an Intelligent 

Automaton (1958) 
Image: Cornell University

McCulloch-Pitts network + 

Learning to adapt the link weights 

→ A binary classifier for patterns

decision 

boundary



Figure: Brian Hayes, American Scientist (May-June 2014)

A network for recognizing 
geometrical patterns
e.g., vertical stripes

All possible 2  2 patterns



Orientation selective cells in 
Primary Visual Cortex
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David Hubel and Torsten Wiesel

(1926-2013) (1924- )
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Neurons responding to bright stripes 
against dark background or dark stripes 

against bright background oriented at 
specific angles 
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A vertical line detector in 

the visual cortex
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The receptive field of a cortical cell with 

ON centre oriented along a line is 

generated from receiving excitatory 

inputs from several LGN ON center cells

LGN cells

Cortical cell

Orientation selective cells in 
Primary Visual Cortex



… and the problem of XOR classification

Marvin Minsky (1927 –2016) & Seymour Papert (1928-2016)

Im
ag

e
: 
M

IT
 |
 C

yn
th

ia
 S

o
lo

m
o
n

In 1969, Minsky & Papert showed that the perceptron 

cannot be trained to function as a XOR gate

Perceptron Learning Rule 

decision 

boundary ?

https://dev.to/swyx/supervised-learning-neural-networks-mpo

Only solved once a learning algorithm for multi-layer 

perceptrons (back-propagation algorithm) was developed 

in the 1980s



Figure: Brian Hayes, American Scientist (May-June 2014)

Multilayer Neural Networks & Deep Learning



Associative Memory as 

Attractor Network

Memories stored as attractors 

of network dynamics

When presented with a novel 

input, the network eventually 

converges to the stored 

pattern that is “closest” to it 

(i.e., to the pattern in whose 

basin of attraction the input lies).

1s

3s

2s

4s



❑ Network of inter-connected binary 

state “neurons”

❑ xi ={ –1 or OFF,  +1 or ON}.

❑ Activation of the neurons are defined 

by xi = sgn(j wij xj )

▪ sgn (q) = −1, if q < 0; 

▪ sgn (q) = +1, if q > 0

T=0 or deterministic dynamics 

❑ Symmetric connection weights, 

▪ i.e. wij = wji

❑ wii=0 (No self connections)

John J Hopfield (1933- )

xi

xj
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Hopfield Model
Attractor Network Model for Associative Memory



http://thebrain.mcgill.ca

Learning
Modifying the synaptic weights

Donald O Hebb (1904-85)

Neurons that fire together, wire together

Hebb’s hypothesis (1949)

“When an axon of cell A is near enough to excite a 

cell B and repeatedly or persistently takes place in 

firing it, some growth process or metabolic change 

takes place in one or both cells such that A’s 

efficiency, as one of the cells firing B, is increased.”

Dynamics of network affected by 

dynamics on networks 

http://www.scholarpedia.org/article/File:DonaldOldingHebb.jpg


Bi & Poo, J Neurosci (1998)

Pre-synaptic j

Post-synaptic i

Spike-timing dependent plasticity
spike-based formulation of Hebb rule
(Markram, 1995)  

synapse strengthened 

if  presynaptic neuron 

“repeatedly or 

persistently takes part 

in firing” the 

postsynaptic one 

(Hebb 1949) 

LTP

Hebb Rule and Biology
Long-term potentiation

First empirical observation (Lomo, 1966)  

supporting Hebb’s hypothesis

Persistent increase in synaptic strength after 

brief high-frequency stimulation of synapse
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Learning in Hopfield Network

Implementing Hebb rule in synaptic weight determination


=

=
M

p

p

j

p

iij
N

w
1

1


： state of ith neuron in the pth pattern
p

i

“” ith neuron is ON   i = +1

“·  ” ith neuron is OFF   i = –1

Four stored patterns in simulation

“One-shot” learning



Example of Hopfield Model: N=3, p=2
The strings (1,–1,1) and (–1,1, – 1) are the stored patterns

Have to be made attractors of the dynamics
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(–1,1, – 1) 

(1,1,1) 

(–1, –1,1) (1,–1,1) 

(1,–1, – 1) 

(1,1, – 1) 

(–1,–1, – 1) 

y

z

x



One pattern (p=1)

i : pattern memorized

For the pattern to be stable,  sgn(j wij j ) = i for all i

This is true if  wij  i j as i
2 = 1 

(the proportionality constant being 1/N)

If M out of N components of the initial state Si are wrong (opposite to i)

the input    hi  sgn(j wij Sj ) = sgn(kwik k – mwim m ) 

Same sign as  Opposite sign to 

will converge to output same as the stored pattern  if M < N/2

 Network will correct errors in the initial pattern and 

converge to , the attractor of the recall dynamics

 – 



Many patterns (p>1)
i

 (=1, …, p): patterns memorized

A natural extension is to make wij a superposition of terms – one for each 

pattern wij  =1,p i
j



For a particular pattern i
 to be stable,  sgn(j wij j

 ) = i
 for all i

the input  hi  j wij j


= (1/N)j i
j

j
 = i

+ (1/N) j i
j

j


Desired pattern Crosstalk term

will converge to output same as the stored pattern if the magnitude of the 

crosstalk term < 1 (true for small p)

 Network will correct errors in any initial pattern sufficiently 

close to any of the stored patterns  (multiple attractors)



Memory Recall in Hopfield Network

❑Start from arbitrary initial configuration of {x}

❑What final state does the network converge ?

❑Evaluate an ‘energy’ value associated with the 

network state: 

❑System converges to an attractor 

a local/global minimum of E



=

−=
j

N

ji
i

jiij xxwE
1

,  
2

1

Image: Tank & Hopfield, Scientific American (1987)

Local Minimum
Global Minimum

Local Minimum



Attractor networks in the neocortex

“the membrane potential of cortical 

neurons fluctuates spontaneously between a 

resting (DOWN) and a depolarized (UP) 

state which may also be coordinated. The 

elevated firing rate in the UP state follows 

sensory stimulation and provides a 

substrate for persistent activity … that 

might mediate working memory.”

“network UP states are circuit attractors 

…that could implement memory states 

or solutions to computational problems.”

Using two-photon calcium imaging reconstructed dynamics of 

spontaneous activity of ~1400 neurons in mouse visual cortex slices



= p / N
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Storage capacity of the Hopfield Model

Recall : stored patterns are lowest minima

Metastable : stored patterns are minima 

but not the lowest

Paramagnetic: the state fluctuates all the time

Spin glass: spurious attractors; 

stored patterns are not minima



Frustration (Absence of structural balance)

+ve

+ve

+ve –ve

–ve

–ve

Frustration results in a rugged energy 

landscape, with the system trapped in any 

one of a large number of local minima (spin 

glass states)

Absence of frustration would correspond to 

a smooth energy landscape having a global 

minmum

Spins in binary states (+1/ − 1) having +/ – interactions at random

+ve +ve

Conflicting Constraints in Disordered Systems

?



Does mesoscopic network 

structure (in particular, 

modular organization) alter 

the dynamics of recall in an 

attractor network ?

Yes.

The convergence to an attractor corresponding to any 

of the stored patterns (recall) is most efficient when 

the network has an 

optimal modular structure (r  rc )

for storing multiple patterns in a network with N nodes 

and L links



Modular

r   rc

Homogeneous

r = 1

Low-basin 

entropy

High-basin 

entropy

Isolated Modules

r << rc

High-basin 

entropy

The attractor landscape of the network 

changes with modularity



Chimera attractor: a stable state comprising sub-parts of 

stored patterns belonging to different modules

Example: 2 stored patterns  (colored blocks: modules)

= [ 1 1 1 1  1  1  1   1  -1 -1 -1 -1 -1 -1 -1 -1 ]

= [ 1 1 1 1 -1 -1 -1 -1   1  1  1   1 -1 -1 -1 -1 ]

A possible chimera state is

[ 1 1 1 1  1  1  1   1   1  1 1   1  -1 -1 -1 -1]
As r increases, these states become less likely via a percolation-like transition

1
2

Low r: “Chimera” attractors

In a network of isolated modules, randomly chosen initial 

states mostly converge to a chimera attractor state



High r : Mixed states

Mixed states can be linear combinations of 

(A) same sign e.g. 1+2+3

(B) different signs e.g. 1-2-3

# stored patterns, p = 4

N=1024, n=128, <k> = 120

Basins of attraction of 

mixed states cover 

smallest fraction of 

phase space of 

network dynamics for 

optimal value of 

modularity rc

For more homogeneous networks, most attractors 

correspond to stored patterns or mixed states 

(mixture of the patterns)



N=1024, n=128, <k> = 120

In a module

In the Network

Size of basins of attraction of stored patterns, v…

…exhibit non-monotonic variation with modularity 

parameter, r

Largest at optimal value rc (n-1)/(N-n) ~ 0.14



# stored patterns, p = 4

N=1024, n=128, <k> = 120

At optimal modularity, time of convergence to stored 

patterns faster than that to mixed states

Multiple time-scales in a modular network 

Fast convergence to a stored sub-pattern within a module + 

slower convergence at network level


