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The brain as a network of neurons

Caenorhabditis elegans nematode nervous system
* neurons ~ 300

* connections ~ 3000

(synaptic ~ 2500, gap junctions ~ 500)

The human brain
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e neurons ~ 10 !
e connections ~ 10 4



Can we understand its workings by treating the mammalian brain as

a very large network of neurons ?
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Churchland and Sejnowski’s classic diagram of levels in the neurosciences
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The spatiotemporal domain of neuroscience and of the main
methods available for the study of the brain
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Dynamics on networks
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Lateral inhibition
Edge detection in vision

Network Motif implementing Center-

Surround principle:

stimulation of cells in central region and
those in surrounding regions having
opposing responses to excitation of
neurons downstream

Implements a “Mexican hat” function that
can compute the smoothed Laplacian of the
stimulus (e.g., an image)

Difference of Gaussians Filter

doi:10.1145/2024676.2024700

Image: Holger Winnemoller

Difference of
Gaussians
(“Mexican hat”)

f(x,0)

"narrow  gaussian
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Image: Troy and Shou, Prog. Ret. Eye Res. 21 (2002)
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Image: Troy and Shou, Prog. Ret. Eye Res. 21 (2002)



Receptive fields

RECEPTIVE FIELD RECEPTIVE FIELD
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Image: David Ottoson, Physiology of the Nervous System (Oxford 1983)

synaptic arrangement underlying organization of receptive fields of the retina in ON
and OFF regions.



Image: David Ottoson, Physiology of the Nervous System (Oxford 1983)

ON-centre and OFF-centre cells
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Image: royalsocietypublishing.org

Stephen W Kuffler
(1913-1980)

* responds to a spot of light in * excited by a spot of light in
central part of receptive field peripheral part of receptive field
* inhibited by illumination of * inhibited by central illumination

peripheral region of the field

lllumination of the entire receptive field causes only slight increase in activity



The logical calculus of nervous activity
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Warren S. McCulloch (1898-1969) Walter H Pitts (1923-1969)

http://infonintelli.blogspot.com/2017/11/

“[They recognized that] the laws governing the embodiment of mind should be sought
among the laws governing information rather than energy or matter.”
Seymour Papert



The alphabet of human thought

Reducing human reasoning to calculation

In the early 18% century, Leibniz provided an outline for a characteristica universalis
An artificial language in which each letter (a pictographic character) would represent

a concept.
These could be then combined and manipulated according
to a set of logical rules to compute all knowledge.

LEIBNIZ (1646-1716)

Image:quadriformisratio.files.wordpress.com/



The laws of thought

““...to investigate the fundamental laws
of those operations of the mind by
which reasoning is performed;

to give expression to them in the
symbolical language of a Calculus, and
upon this foundation to establish the
science of Logic and construct its
method ...

... and, finally, to collect from the
various elements of truth brought to
view in the course of these inquiries
some probable intimations concerning
the nature and constitution of the
human mind.”

An Investigation of the Laws of Thought (1854)

George Boole
(1815-1864)

https://www.theguardian.com/
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Logical calculus:
The automation of thought

ALEF PRINCIPIA MATHEMATICA

Image: .raptisrarebooks.com

Principia Mathematica (1910-1913) of Whitehead
and Russell provided a model by attempting to
derive the entire body of mathematical knowledge
by using logical operations such as
* Conjunction (AND)

* Disjunction (OR)

* Negation (NOT)

on a set of simple propositions
(either TRUE or FALSE)

McCulloch

A neuron fires when the signals received
from its neighboring cells exceed a
threshold, else it is at rest = binary state
(ON/OFF =TRUE/FALSE)

* Signal: proposition n

« Neurons: logic gates (e.g., AND) Alfred North Whitehead Bertrand Russell

* Varying threshold: Different logic gates (1861-1947) (1872-1970)

Image: pinterest.co.uk Image: flickr.com
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Image: chatbotslife.com/keras-in-a-single-
mcculloch-pitts-neuron-317397cccd45

The McCulloch-Pitts neuron
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The McCulloch-Pitts network

Circuits implementing computational logic

Connection weights Connection weights

+}

O
yQO

X OR y

X AND‘F Connection weight

+§P -

Figure: Cowan, Bull. Math. Biol. (1990)

NOT »

Each unit is activated iff its total excitation > 0.
Positive weights: “excitatory’” synapses, negative weights:“inhibitory” synapses
open circles: excitatory neurons; filled circles: inhibitory neurons



Perceptron

The first neural network

McCulloch-Pitts network +
Learning to adapt the link weights
— A binary classifier for patterns

FIG. 1 — Organization of a biological brain. (Red areas indicate

active cells, responding to the letter X.)
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FIG. 2 — Organization of a perceptron.

Learning = modifying
the connection weights
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A network for recognizing
geometrlcal Patte nNs All possible 2 x 2 patterns

e.g., vertical stripes Hal gHFHHE el H
. O ol B
B

output neuron /

accepted motifs: E B E .

input layer
(4 x 4 neurons)

sensor
(5 x 5 pixels)

Figure: Brian Hayes, American Scientist (May-June 2014)



Image: www.researchgate.net/profile/Anh_Nguyen44/publication/335707980/figure/figl /

Orientation selective ceIIs |n
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avid Hubel and Torsten Wiesel

(1926-2013)  (1924-)

Neurons responding to bright stripes
against dark background or dark stripes
against bright background oriented at
specific angles

{////’// WEFT >

,-»4-;__,./;,_ S
LEFT
L
Pl

~ 7 7 S maw{

wod'suoinauduimouy :a8ew|



Orientation selective cells in
Primary Visual Cortex

......................

rd 1983)

The receptive field of a cortical cell with
~_ ON centre oriented along a line is

generated from receiving excitatory
inputs from several LGN ON center cells

I

of the Nervous System (Oxfo

lLGNc

Image: David Ottoson, Physiology

A vertical line detector in
the visual cortex

Cortical cell

Image: Hubel and Wiesel, J. Physiol. 160 (1962), 160



Perceptron Learning Rule

w. < W, +Aw,
where

Aw, =n(t—-o)x,

/1] N

learning target perceptron input
rate  value output value

Image: MIT | Cynthia Solomon

https://dev.to/swyx/supervised-learning-neural-networks-mpo Marvin MlnSk)’ ( 1927 -201 6) & Seymour Papert (I 928-201 6)

... and the problem of XOR classification

In 1969, Minsky & Papert showed that the perceptron
cannot be trained to function as a XOR gate

Only solved once a learning algorithm for multi-layer

perceptrons (back-propagation algorithm) was developed
in the 1980s

e decision
® boundary ?
(

v



0 (0] -
o o o= I
® ) Y
= | Y/
- (10 L w\\\\\
@ AO © 1© . 5&
& | o9
\@ E —
\QA_ _AM.A o ! e
< o * (o) —
—— b e gr— S

Multilayer Neural Networks & Deep Learning

_,
, ,///' 47
\ rf' \ \
{ 7 AR 4\%“\“\\.
SRS 1,
\ AR Y KA 4
O\ IO\ @b\ 7
A VAN A\ i) ,»,1\ !.. N
N7 YRED7 N
’o > 04» “../ \."0, o« S 'Qb ‘».“."._...o.' «\,?\.
@VLY. Vs @ 2Vt gt Y
SRRSO

~\ oW ( 4

G EROAMYA
’ -

Ay “Oo\ /ls\’ “" A ‘ /. v, "o

. V\ N A v .‘.1 v, ‘

R SIRIED /o.“»....»“..“.h,o.v.nv %
290 AW ELAS ?..v.. AT
— PN
LN TN AN

VY,

20N\

Q/ZQ

—

w..r mer Q . -
3 o8 > W T > Q. >
o= w8 =.c 90 £ o

Figure: Brian Hayes, American Scientist (May-June 2014)



Associative Memory as
Attractor Network

Memories stored as attractors
of network dynamics
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When presented with a novel
input, the network eventually
converges to the stored
pattern that is “closest” to it
(i.e., to the pattern in whose
basin of attraction the input lies).
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Hopfield Model

Attractor Network Model for Associative Memory

'

'1 .‘;::1

John | Hopfield (1933-)
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J Network of inter-connected binary
state “neurons”

d x, ={ -1 or OFF, +1 or ON}. N

J Activation of the neurons are defined C Wiy = Wyg x,

= A \—»
by X; Sgn(Zj Wi X ) @
" sgn (q) =-1,if g <O0;
" sgn (q) =+1,ifq>0

T=0 or deterministic dynamics

( Symmetric connection weights,

"ie.w; =W,

d w.=0 (No self connections)
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Learning Dynamics of network affected by

Modifying the synaptic weights dynamics on networks

A) - M_/\

The € )rglmi:uli(m

of Behavior

Neuron's Synapse is no‘ A NEUROFSYCHOLOGICAL THEORY
efficient enough to trigger i
an action potential. b
AR B
Donald O Hebb (1904-85)
TEALA A A A A AN A AN A AN A AN AN AN AN A AN A AN 9 .
3 }-‘eavy simunaneous H ebb S hypotheSIS ( I 949) News York + JOH WILEY & SONS, Ins
- activity occurs Lomdon - CHAFMAN & HALL. Limited

in both neurons

Neurons that fire together, wire together

“When an axon of cell A is near enough to excite a

hhhhhhhhhhhh cell B and repeatedly or persistently takes place in

R firing it, some growth process or metabolic change
““““““ Neuron's synapse, ; !
Shranotienss by takes place in one or both cells such that A’s

this simultaneous efficiency, as one of the cells firing B, is increased.”

activity, triggers
an action potential,

http://thebrain.mcgill.ca


http://www.scholarpedia.org/article/File:DonaldOldingHebb.jpg

https://sites.google.com/site/mcauliffeneur493/home/synaptic-

plasticity/Long-Term-Potentiation1.jpg?attredirects=0

Initial State Repeated
: Stimulation

S

1 week Later

Hebb Rule and Biology

Long-term potentiation

First empirical observation (Lomo, 1966)
supporting Hebb’s hypothesis

| Persistent increase in synaptic strength after
brief high-frequency stimulation of synapse

Spike-timing dependent plasticity

spike-based formulation of Hebb rule

(Markram, 1995)

synapse strengthened
if presynaptic neuron
“repeatedly or
persistently takes part
in firing” the
postsynaptic one
(Hebb 1949)

Bi & Poo, ] Neurosci (1998)
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Learning in Hopfield Network

Implementing Hebb rule in synaptic weight determination

1 M
“One-shot” learning W. = — Z EPEP

f_p : state of i*" neuron in the p*" pattern
I

Four stored patterns in simulation

“W” " neuronis ON & =+1
“.” " neuronis OFF &£=-1




Example of Hopfield Model: N=3, p=2
The strings (1,-1,1) and (-1,1, — 1) are the stored patterns y
Have to be made attractors of the dynamics | iz

1 M (-1.1.1) (1,1,1)

(-1,-1,—1) (1-1,-1)



One pattern (p=1) \ / \ e

I 2

G, : pattern memorized / \ / \

For the pattern to be stable, sgn(zj Wij Eaj ) - E:i for all i

This is true if ~ W;; OC ‘ii éj as £2=1
(the proportionality constant being 1/N)

If M out of N components of the initial state S, are wrong (opposite to &)

the input h = Sgn(z W S ) Sgn(zkwlk ka meim (irp)

Same S|gn as i Opposite sign to &

will converge to output same as the stored pattern g it M < N/2
—> Network will correct errors in the initial pattern and
converge to ¢, the attractor of the recall dynamics



Many patterns (p>1)

cH (n=1, ..., p): patterns memorized

A natural extension is to make W;; a superposition of terms — one for each

J
pattern Wj; oC ZLFLP ‘ﬁi“ﬁj“

For a particular pattern %iv to be stable, sgn(Zj Wij gjv ) - iiv for all i

the input hi = Zi Wi; giv
= (UN)2y2,, GHGHGY = &0 (UN) 2420 GHGHEY

Desired pattern Crosstalk term

will converge to output same as the stored pattern if the magnitude of the
crosstalk term < | (true for small p)

—> Network will correct errors in any initial pattern sufficiently
close to any of the stored patterns E* (multiple attractors)



Memory Recall in Hopfield Network

Start from arbitrary initial configuration of {x}
(dWhat final state does the network converge ?

(d Evaluate an ‘energy’ value associated with the
network state: E— __ZZW X, X

T

] System converges to an attractor /"'/77 \3

Local Minimum

Local Minimum
Global Minimum

Image: Tank & Hopfield, Scientific American (1987)



Attractor networks in the neocortex

Using two-photon calcium imaging reconstructed dynamics of

Attractor dmmius of network spontaneous activity of ~1400 neurons in mouse visual cortex slices
UP states in the neocortex

Rosa Cossart, Dmitriy Aronov & Rafael Yuste

56+ 1 mV UP state

NATURE | WOL 423 | 13 MAY 2003 | Af= 58 i 5 me

Tgoan = 164 £ 46 ms

AV=84+0.TmV
DOWN state

65+ 1mVv

“the membrane potential of cortical

{ L7 neurons fluctuates spontaneously between a
5 resting (DOWN) and a depolarized (UP)
state which may also be coordinated.The

’ elevated firing rate in the UP state follows

sensory stimulation and provides a
substrate for persistent activity ... that
might mediate working memory.”

MATURE - w04 376 - 27 ALY 1985

“network UP states are circuit attractors
IH."E',' 'f‘.-n
ﬂl-l' ]‘1[]".*}.‘!

il i ...that could implement memory states
‘I'.’ | L I ] t“'u'u‘.ff .‘.wf."ﬂ'.u-“".p'\lk, ﬂ'ﬂﬁ;\a"ﬂu‘ . . 9y
o o RSP o ol N Wl swwn . O solutions to computational problems.




Storage capacity of the Hopfield Model

Paramagnetic: the state fluctuates all the time
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Frustration (Absence of structural balance)

Conflicting Constraints in Disordered Systems

Spins in binary states (+1/ — 1) having +/ — interactions at random

{} +ve {}

tve +ve

‘ ‘ +ve

Frustration results in a rugged energy
landscape, with the system trapped in any
one of a large number of local minima (spin
glass states)

Absence of frustration would correspond to
a smooth energy landscape having a global
minmum
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Does mesoscopic network
structure (in particular,

modular organization) alter B o e
the dynamics of recall in an
attractor network ? so:;f-‘i*‘ B, -

| S

150} .. °

50 100 150 200 250

Yes.

The convergence to an attractor corresponding to any
of the stored patterns (recall) is most efficient when
the network has an

optimal modular structure (r = r_)

for storing multiple patterns in a network with N nodes
and L links



The attractor landscape of the network
changes with modularity

Isolated Modules Modular Homogeneous
r<<r. r =r. r=|
High-basin Low-basin High-basin

entropy entropy entropy




Low r:*““Chimera’” attractors

In a network of isolated modules, randomly chosen initial
states mostly converge to a chimera attractor state

Chimera attractor: a stable state comprising sub-parts of

stored patterns belonging to different modules

Example: 2 stored patterns (colored blocks: modules)

51
52
A possible chimera state is

(1111111 1111 1-1-1-1-1]

As r increases, these states become less likely via a percolation-like transition

1111111 1 ||-1-1-1-1}-1-1-1-1]
[1111(-1-1-1-1}/111 1|-1-1-1-1]




High r : Mixed states

For more homogeneous networks, most attractors
correspond to stored patterns or mixed states

(mixture of the patterns)

Mixed states can be linear combinations of

(A) same sign e.g. &, +&,1C;
(B) different signs e.g. &,-C,-&5 4

# stored patterns, p = 4
N=1024,n=128, <k> = 120

Fraction of non-stored-pattern attractors that are mixed states

———total mixed states ffﬂ
" same sign ,'
. . 08r | + different signs H
Basins of attraction of -
i [ ]
mixed states cover 0.6} e e
st !
smallest fraction of E A -
04} ' RAAL
I +et
phase space of ! ***n
network dynamics for o2l o
: e
optimal value of R
i 0 — -
modularity r_ o o= '



Size of basins of attraction of stored patterns,v...

N=1024,n=128, <k> =120

iy P =1 ':;
o p=2
O p= 3 )
v p=4 :
> p=8 ‘M}D 1
. _ A # :
E : + p=10 A P E
W%ﬂ%* A P = 1 A ]
04r¢ o p=2 A -:0.4
In a module 9 p=3 ]
0.2} v op=4 10.2
[= p= 8
* p=10J1 _. |
e e T e en L LA ...
DFIDD1 0.01 0.1 1 0.01 0.1 1
r r

...exhibit non-monotonic variation with modularity
parameter, r

Largest at optimal value r.~ (n-1)/(N-n) ~ 0.14



At optimal modularity, time of convergence to stored
patterns faster than that to mixed states

(T)(MC steps)

# stored patterns, p = 4
N=1024, n=128, <k> = 120

A 1 (MC steps)

Multiple time-scales in a modular network =
Fast convergence to a stored sub-pattern within a module +

slower convergence at network level



