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 Intra-cellular biochemical networks 

 Metabolic networks 
Nodes: metabolites (substrates & products of metabolism) 

Links: chemical reactions (directed) 

 Genetic regulatory networks 
Nodes: Genes & Proteins 

Links: regulatory interactions (directed) 

 Protein-Protein interaction network 
Nodes: Proteins 

Links:  physical binding and formation of protein complex 

(undirected) 

 Signaling network 
Nodes: Signaling molecules e.g., kinase, cyclicAMP, Ca 

Links: chemical reactions (directed) 



Metabolism  

 

Chemical process through which cells break down nutrients to 

generate energy and/or into usable building blocks (catabolic 

metabolism) and then reassemble them using energy to form 

biological molecules necessary for the cell (anabolic 

metabolism). 

 

Uses sequence of chemical reactions (pathways) to convert 

substrates (initial inputs) successively into useful products.  

Reactions are aided by enzymes. 

 

Metabolic network: The set of all reactions in all pathways 



KEGG 

Representing 
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Reactions 
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Projection to only metabolites 



Citric acid cycle 

Also known as 

Tricarboxylic Acid 

(TCA) or Krebs cycle 

is a series of 

enzyme-catalysed 

chemical reactions 

lying at the heart of 

aerobic 

metabolism. 

Involved in the 

breakdown of all 3 

major food groups: 

carbohydrates, lipids 

and proteins. 

Hans Krebs 

(1900-1981) 
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Wagner & Fell (2001) The small world inside large metabolic networks, Proc Roy Soc Lond B 

Graphical representation of metabolic networks 

Substrate graph  Reaction graph  



Scale-free nature of degree distribution of 

metabolic networks 
              A portion of the WIT database for E. coli.  

 

 

 

 

 

 

 
Nodes are substrates & products, linked by enzyme-substrate complexes 

(black boxes)  



Modular nature of metabolic networks 
Guimera and Amaral, Nature (2005) 

Metabolic network of E. coli 

(N=473, L =674).  

Each circle represents a module and is colored according to the KEGG 

pathway classification of the metabolites it contains. 



Modular Networks: dense connections within certain sub-

networks (modules) & relatively few connections between 

modules 

Modules: A mesoscopic organizational principle 

of networks 
Going beyond motifs but more detailed than global description (L, C etc.) 

Kim & Park, WIREs Syst Biol & Med, 2010 

Micro Meso Macro 



Problem: 

Given a network,  

how do we find the modules (communities) 

into which it can be divided ? 

Modular Biology (Hartwell et al, Nature 1999) 

Functional modules as a critical level of biological 

organization 

Modules in biological networks are often 

associated with specific functions 



Community Detection in Networks 
Also referred to as Graph Partitioning or Module Determination 

How to divide the nodes of a network into several groups such 

that nodes in each group are densely or strongly inter-connected 

A 

B 

C 

E 
D 

F 

G 

H 

I 
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E.g., it is clear that node clusters 

I: {A,B,C,D,E} and II: {F,G,H,I,J} 

constitute two separate groups 

that are highly intra-connected 

but has only a single link 

connecting the two groups 

The corresponding adjacency matrix will have an almost block- 

diagonal form – the two blocks corresponding to node clusters I & II 

 

However for large networks the modular character may not be 

visually apparent – and adjacency matrices need to be partitioned 



How to divide the nodes of a network into a given number of 

non-overlapping groups of given sizes such that the number of 

edges between groups is minimized ? 

Graph partitioning  
A classic problem in computer science from 1960s  

A generalization of this problem,  

How to divide the nodes into several groups such that most 

links are within groups and few links are between groups  
 

referred to as 

Community detection 

How we define “most” and “few” can vary from one algorithm to 

another 



Spectral partitioning  Fiedler 1973 

Consider a network of N nodes and L links 

Aim: to divide the N nodes into 2 groups (Groups A and B, say) to 

reduce the cut size (number of links between the two groups) 

Partitioning into more than 2 groups can be done by repeated bisection 

R = (1/2) ij Aij such that i and j belong to different groups 

For each node, a label s = {–1,+1} is defined 

si = +1 if node i belongs to group A, = –1 if i belongs to group B 

Thus  

(1/2) (1 – si sj ) = 1 if i & j are in different groups,  

                       = 0 if i & j are in same group 

R = (1/4) ij Aij(1 – si sj ) = (1/4) ij ( ki ij –  Aij ) si sj  

  R = (1/4) ij Lij si sj  where L = D – A is the Laplacian matrix 

In matrix notation   R = (1/4) sT L s    where s = { s1 s2 … sN } 

Goal of Partitioning: To find s that minimizes R given L  



Partitioning as minimization Fiedler 1973 

If si were allowed to take any possible value, then differentiation gives the optimum  

But si are restricted to {–1,+1}  difficult problem 

Possible approximate solution: 

Allow si to take any value subject to the constraints that 

(i) i si
2 = N  s is a vector in N-dimensional unit hypersphere 

(ii) i si = NA – NB where NA,NB are the sizes of the two groups 

In matrix notation IT s = NA – NB  

 

The minimization problem can now be solved as 

/ si [jk Ljk sj sk +  ( N – j sj
2 ) + 2 ([NA – NB] – j sj)] = 0 

where ,  are Lagrange multipliers for enforcing the constraints 

 j Lij sj =  si +        In matrix notation, L s =   s +  1  

s can be seen as a vector that points to any one 

of the 2N vertices of N-dimensional hypercube 



Partitioning using the Laplacian spectrum 

Multiplying L s =   s +  1 by IT on the left 

we get           [NA – NB] +  N =0      / = –[NA – NB]/N 
Using  IT s = NA – NB and IT L = 0 (I is eigenvector of L with eigenvalue 0) 

 

Defining a new vector  x = s + (/) 1 = s – 1[NA – NB]/N 

 L x = L (s + (/) 1) = L s =  s +  1 =  x 

Thus x is an eigenvector of the Laplacian 

 

But which eigenvector ? 

The one that gives the smallest value of cut size R 
We can’t choose 1={1,1,…,1} as it is orthogonal to x because IT x = 0  

Note that cut size is proportional to the eigenvalue  

as R = (1/4) sT L s = (1/4) xT L x = (1/4)  xTx = [NANB]/N 

Thus we have to choose the eigenvector corresponding to the 

lowest non-zero eigevalue (smallest eigenvalue of L is 0 with eigenvector 1) 

Finally, optimal partition s is obtained from s = x + 1[NA – NB]/N 



From Relaxation Approxn to the Network 

For the actual network, the optimal partition s is subject to the 

additional constraint that (i) si = +1 or –1, and (ii) exactly NA of the 

components are +1 and NB  are –1 

 

Thus, we need to choose s as close as possible to ideal value 

subject to the constraints  maximize the vector length, i.e., 

 sT s = sT (x + 1[NA – NB]/N)  = i si (xi + [NA – NB]/N) 

by assigning si = +1 for the nodes corresponding to the NA largest 

(most positive) values of x, i.e., the components of the eigenvector 

of the lowest non-zero eigenvalue of L, and, si = –1 to the 

remaining NB nodes 

 

Note: If NA ≠ NB, we can either choose (i) NA elements to be +1 

(NB  elements –1) or (ii) NA elements to be – 1 (NB  elements +1) 

The one having lower cut size is the optimal partition 



Community detection 

(Newman, EPJB, 2004)   

A: Adjacency matrix 

L : Total number of links  

ki : degree of i-th node 

ci : label of module to which i-th node belongs  

One suggested measure: 

A 

B C 

D 

How to quantify the degree of modularity for a given 

partitioning of a network into communities ? 

Is there a distinction between links within a module 

and that between a module and the rest ? 

probability of an edge betn 2 nodes 

proportional to their degrees 

=1 if nodes are in 

same community 

For a random network, Q = 0 

i.e., the connection density within a module is no 

different from that anywhere else in the network 



Community detection 

A 

B C 

D 

Modules determined through a generalization of the 

spectral method (Leicht & Newman, 2008) 

For directed & weighted networks: 

W: Weight matrix 

si : strength of i-th node 

(                    )   

Calculate eigenvector corresponding to largest 

+ve eigenvalue of symmetrized modularity matrix 

B + BT where  

Bij = Wij – [si
in sj

out / LW] 
and then assign communities based on the signs 

of the elements of the eigenvector. 

Simplest generalization of the method to more 

than 2 communities is to use repeated bisection 



A simple model of modular networks 

Model parameter r :  

Ratio of inter- to intra-modular connection density 

Module ≡ random network 



Comparison with Watts-Strogatz model 

E  = [avg path length, ℓ ]-1 = 2 /N(N-1) i>jdij 
Communication 

efficiency 

Clustering 

coefficient 

Structural measures used: 

C  = fraction of observed to potential triads   

     = (1 /N) i2ni / ki (ki - 1) 

WS and Modular networks behave 

similarly as function of p or r 

(Also for between-ness centrality, 

edge clustering, etc) 

In fact, for same N and <k>, we can 

find p and r such that the WS and 

Modular networks have the same 

“modularity” Q 

Pan and Sinha, EPL (2009) 



Consider synchronization on modular networks 

e.g., phase oscillators: di /dt = w + (1/ki)Kij sin (j -  i) 

Network topology 

 2 distinct time scales in Modular networks: t modular & t global  

Pan and Sinha, EPL (2009) 

How can you tell them apart ? 
Dynamics on Modular networks different from that on 

Watts-Strogatz small-world networks 



Existence of distinct time-scales in 

Modular networks 
Consider linearized dynamics around synchronized state 

di /dt = - ( /ki)jLij j ,    (i = 1,…,N) 

L: Laplacian  

: coupling strength of oscillators Focus on the normal modes: 

i (t) = jBij j = i (0) exp(-i t),    (i = 1,…,N) 

B: matrix of eigenvectors 

i :eigenvalues 
of L’ = D-1 L,  

D: diagonal matrix s.t. Dii=ki 

 

L’ → L=D1/2 L’ D-1/2 is symmetric, normalized Laplacian i real 

Differences in time-scales of modes   gap in spectrum of L    

Mode for smallest i : associated with global synchronization 

Other modes : synchronization within different groups of 

oscillators 

 

 

Pan and Sinha, EPL (2009) 



Eigenvalue spectra of the Laplacian 
Shows the existence of spectral gap  distinct time scales 

Modular network Laplacian spectra 

Existence of distinct time-scales in Modular networks 

No such distinction in Watts-Strogatz small-world networks 

gap 

No gap 

WS network Laplacian spectra 

Spectral gap in modular 

networks diverges with 

decreasing r 

Pan and Sinha, EPL (2009) 



The networks of cortical 

connections in 

mammalian brain have 

been shown to have 

small-world structural 

properties 

 

Our analysis reveals 

their dynamical 

properties to be 

consistent with modular 

“small-world” networks  

gap gap 

Fast synchronization of neuronal activity within a module :  

The mechanism for efficient neural information processing ? 

How about “real” SW networks ? 
Pan and Sinha, EPL (2009) 



How about other kinds of 

mesoscopic structures ? 

E.g., Hierarchy 

 

Modules may occur at different levels of hierarchy 

Level 1: Modules A, B, C, D 

Level 2: Meta-Modules I, II 

A B C D 

I II 

 

• r = 1 : randomly coupled network. 

• r = 0: isolated sub-networks 

(modules) 

• 0 < r < 1 : hierarchically structured 

network. 

Hierarchical Modular networks 

 



Hierarchical modularity in metabolic network 
Ravasz et al, Science (2002) Topological overlap: 



Hierarchical Modular Networks exhibit several distinct time-scales 

– equal to the number of hierarchical levels (Sinha & Poria, 2011) 

Synchronization of phase oscillators 

in hierarchical modular network 

show as many distinct time-scales as 

number of hierarchical levels … 

Reflected in the eigenvalue spectra 


