Systems Biology Across Scales: A Personal View XII. Intra-cellular Systems II: Metabolism and Modularity

Sitabhra Sinha IMSc Chennai

Intra-cellular biochemical networks

Metabolic networks

Nodes: metabolites (substrates & products of metabolism) Links: chemical reactions (directed)

Genetic regulatory networks

Nodes: Genes & Proteins

Links: regulatory interactions (directed)

Protein-Protein interaction network

Nodes: Proteins

Links: physical binding and formation of protein complex (undirected)

□ Signaling network

Nodes: Signaling molecules e.g., kinase, cyclicAMP, Ca Links: chemical reactions (directed)

Metabolism

Chemical process through which cells break down nutrients to generate energy and/or into usable building blocks (*catabolic metabolism*) and then reassemble them using energy to form biological molecules necessary for the cell (*anabolic metabolism*).

Uses sequence of chemical reactions (pathways) to convert substrates (initial inputs) successively into useful products. Reactions are aided by enzymes.

Metabolic network: The set of all reactions in all pathways

Representing Metabolic Networks

Tripartite directed network

Metabolites

Projection to only metabolites

Citric acid cycle Also known as **Tricarboxylic Acid** (TCA) or Krebs cycle is a series of enzyme-catalysed chemical reactions lying at the heart of aerobic metabolism.

Involved in the breakdown of all 3 major food groups: carbohydrates, lipids and proteins.

Graphical representation of metabolic networks

(a) 1 glucose 6-phosphate (G6P) + 1 NADP⁺

1 6-phosphoglucono δ -lactone + 1 H₂O

1 6-phosphogluconate + 1 NADP⁺

1 ribulose 5-phosphate

 \xrightarrow{zwf} 1 6-phosphoglucono δ -lactone (6PGL) + 1 NADPH \xrightarrow{pgl} 1 6-phosphogluconate (6PG) \xrightarrow{gnd} 1 ribulose 5-phosphate (R5P) + 1 NADPH \xrightarrow{rpe} 1 xylulose 5-phosphate (X5P)

(b) G6P NADPH H₂O NADP⁺ 6PGD H₂O X5P R5P 6PG

Substrate graph

Reaction graph

Wagner & Fell (2001) The small world inside large metabolic networks, Proc Roy Soc Lond B

Scale-free nature of degree distribution of metabolic networks

A portion of the WIT database for E. coli.

H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and A.L. Barabasi, Nature, 407 651 (2000)

Modular nature of metabolic networks

Each circle represents a module and is colored according to the KEGG pathway classification of the metabolites it contains.

Metabolic network of *E. coli* (N=473, L=674).

Modular Networks: dense connections *within* certain subnetworks (modules) & relatively few connections *between* modules

Modules: A mesoscopic organizational principle of networks

Going beyond motifs but more detailed than global description (L, C etc.)

Kim & Park, WIREs Syst Biol & Med, 2010

Modular Biology (Hartwell et al, Nature 1999) Functional modules as a critical level of biological organization

Modules in biological networks are often associated with specific functions

Problem:

Given a network,

how do we find the modules (communities) into which it can be divided ?

Community Detection in Networks

Also referred to as Graph Partitioning or Module Determination

How to divide the nodes of a network into several groups such that nodes in each group are densely or strongly inter-connected

E.g., it is clear that node clusters I: {A,B,C,D,E} and II: {F,G,H,I,J} constitute two separate groups that are highly intra-connected but has only a single link connecting the two groups

The corresponding adjacency matrix will have an almost blockdiagonal form – the two blocks corresponding to node clusters I & II

However for large networks the modular character may not be visually apparent – and adjacency matrices need to be partitioned

Graph partitioning

A classic problem in computer science from 1960s

How to divide the nodes of a network into a given number of non-overlapping groups of given sizes such that the number of edges between groups is minimized ?

A generalization of this problem,

How to divide the nodes into several groups such that most links are within groups and few links are between groups

referred to as

Community detection

How we define "most" and "few" can vary from one algorithm to another

Spectral partitioning

Fiedler 1973

Consider a network of N nodes and L links

Aim: to divide the N nodes into 2 groups (Groups A and B, say) to reduce the cut size (number of links between the two groups)

R = (1/2) $\Sigma_{ij} A_{ij}$ such that i and j belong to different groups Partitioning into more than 2 groups can be done by repeated bisection

For each node, a label $s = \{-1, +1\}$ is defined $s_i = +1$ if node i belongs to group A, = -1 if i belongs to group B Thus

(1/2) (1 – s_i s_j) = 1 if i & j are in different groups, = 0 if i & j are in same group

 $\Rightarrow \mathbf{R} = (\mathbf{I}/4) \Sigma_{ij} \mathbf{A}_{ij} (\mathbf{1} - \mathbf{s}_i \mathbf{s}_j) = (\mathbf{I}/4) \Sigma_{ij} (\mathbf{k}_i \delta_{ij} - \mathbf{A}_{ij}) \mathbf{s}_i \mathbf{s}_j$ $\Rightarrow \mathbf{R} = (\mathbf{I}/4) \Sigma_{ij} \mathbf{L}_{ij} \mathbf{s}_i \mathbf{s}_j \text{ where } \mathbf{L} = \mathbf{D} - \mathbf{A} \text{ is the Laplacian matrix}$ In matrix notation $\mathbf{R} = (\mathbf{I}/4) \mathbf{s}^T \mathbf{L} \mathbf{s}$ where $\mathbf{s} = \{\mathbf{s}_1 \mathbf{s}_2 \dots \mathbf{s}_N\}$ **Goal of Partitioning: To find s that minimizes R given L**

Partitioning as minimization

If s_i were allowed to take any possible value, then differentiation gives the optimum

Fiedler 1973

But s_i are restricted to $\{-1,+1\} \Rightarrow$ difficult problem

s can be seen as a vector that points to any one of the 2^N vertices of N-dimensional hypercube

Possible approximate solution: Allow s_i to take any value subject to the constraints that (i) $\Sigma_i s_i^2 = N \Rightarrow s$ is a vector in N-dimensional unit hypersphere (ii) $\Sigma_i s_i = N_A - N_B$ where N_A, N_B are the sizes of the two groups In matrix notation $I^T s = N_A - N_B$

The minimization problem can now be solved as $\partial/\partial s_i \left[\sum_{jk} L_{jk} s_j s_k + \lambda \left(N - \sum_j s_j^2 \right) + 2\mu \left(\left[N_A - N_B \right] - \sum_j s_j \right) \right] = 0$ where λ, μ are Lagrange multipliers for enforcing the constraints $\Rightarrow \sum_j L_{ij} s_j = \lambda s_i + \mu$ In matrix notation, $L s = \lambda s + \mu$

Partitioning using the Laplacian spectrum

Multiplying $\mathbf{L} \mathbf{s} = \lambda \mathbf{s} + \mu \mathbf{I}$ by \mathbf{I}^{T} on the left we get $\lambda [N_{\mathsf{A}} - N_{\mathsf{B}}] + \mu \mathbf{N} = \mathbf{0} \implies \mu/\lambda = -[N_{\mathsf{A}} - N_{\mathsf{B}}]/\mathbf{N}$ Using $\mathbf{I}^{\mathsf{T}} \mathbf{s} = N_{\mathsf{A}} - N_{\mathsf{B}}$ and $\mathbf{I}^{\mathsf{T}} \mathbf{L} = 0$ (I is eigenvector of L with eigenvalue 0)

Defining a new vector $\mathbf{x} = \mathbf{s} + (\mu/\lambda) \mathbf{I} = \mathbf{s} - \mathbf{I}[N_A - N_B]/N$ $\Rightarrow \mathbf{L} \mathbf{x} = \mathbf{L} (\mathbf{s} + (\mu/\lambda) \mathbf{I}) = \mathbf{L} \mathbf{s} = \lambda \mathbf{s} + \mu \mathbf{I} = \lambda \mathbf{x}$ Thus \mathbf{x} is an eigenvector of the Laplacian

But which eigenvector ?

The one that gives the smallest value of cut size R We can't choose $I = \{I, I, ..., I\}$ as it is orthogonal to x because $I^T x = 0$ Note that cut size is proportional to the eigenvalue λ as $R = (I/4) s^T L s = (I/4) x^T L x = (I/4) \lambda x^T x = \lambda [N_A N_B]/N$ Thus we have to choose the eigenvector corresponding to the lowest non-zero eigevalue (smallest eigenvalue of L is 0 with eigenvector I) Finally, optimal partition s is obtained from $s = x + I[N_A - N_B]/N$

From Relaxation Approxn to the Network

For the actual network, the optimal partition **s** is subject to the additional constraint that (i) $s_i = +1$ or -1, and (ii) exactly N_A of the components are +1 and N_B are -1

Thus, we need to choose s as close as possible to ideal value subject to the constraints \Rightarrow maximize the vector length, i.e., $\mathbf{s}^T \mathbf{s} = \mathbf{s}^T (\mathbf{x} + \mathbf{I}[N_A - N_B]/N) = \sum_i s_i (\mathbf{x}_i + [N_A - N_B]/N)$ by assigning $s_i = +1$ for the nodes corresponding to the N_A largest (most positive) values of x, i.e., the components of the eigenvector of the lowest non-zero eigenvalue of L, and, $s_i = -1$ to the remaining N_B nodes

Note: If $N_A \neq N_B$, we can either choose (i) N_A elements to be +1 (N_B elements -1) or (ii) N_A elements to be -1 (N_B elements +1) The one having lower cut size is the optimal partition

Community detection

How to quantify the degree of modularity for a given partitioning of a network into communities ? Is there a distinction between links within a module and that between a module and the rest ?

One suggested measure:

= 1 if nodes are in same community

(Newman, EPJB, 2004)

probability of an edge betn 2 nodes proportional to their degrees

A:Adjacency matrix L :Total number of links k_i : degree of *i*-th node c_i : label of module to which *i*-th node belongs

For a random network, Q = 0

i.e., the connection density within a module is no different from that anywhere else in the network

Community detection

For directed & weighted networks:

$$Q^{W} \equiv \frac{1}{L^{W}} \sum_{i,j} \left[W_{ij} - \frac{s_{i}^{\text{in}} s_{j}^{\text{out}}}{L^{W}} \right] \delta_{c_{i}c_{j}} \qquad (L^{W} = \sum_{i,j} W_{ij})$$

W:Weight matrix s_i : strength of *i*-th node

Modules determined through a generalization of the spectral method (Leicht & Newman, 2008)

Calculate eigenvector corresponding to largest +ve eigenvalue of symmetrized modularity matrix **B** + **B**^T where

 $B_{ij} = W_{ij} - [s_i^{\text{ in }} s_j^{\text{ out }} / L^W]$ and then assign communities based on the signs of the elements of the eigenvector. Simplest generalization of the method to more than 2 communities is to use repeated bisection

A simple model of modular networks

Model parameter r :

Ratio of inter- to intra-modular connection density

(a) r = 0 (b) r = 0.1 (c) r = 1

Comparison with Watts-Strogatz model

Structural measures used:

E = [avg path length, ℓ]⁻¹ = 2 /N(N-1) $\sum_{i>j} d_{ij}$

Clustering coefficient

efficiency

Communication

WS and Modular networks behave similarly as function of p or r (Also for between-ness centrality, edge clustering, etc)

In fact, for same N and <k>, we can find p and r such that the WS and Modular networks have the same "modularity" Q

Pan and Sinha, EPL (2009)

Pan and Sinha, EPL (2009) How can you tell them apart? Dynamics on Modular networks different from that on Watts-Strogatz small-world networks Consider synchronization on modular networks Network topology e.g., phase oscillators: $d\theta_i / dt = w + (I/k_i) \sum K_{ii} \sin (\theta_i - \theta_i)$ 2 distinct time scales in Modular networks: t modular & t global 80 0.8 Modular 9 WS 70 0.6 sync 60 50 0.4ds 50 0.2 20 40 sync 40 Vo. of sync. clusters 0.5 0000000000000000 FR 30 Modular 10^{2} 20 WS -0-000-00 10 0 10^{°L} 10⁻³ 10⁻¹ 10-2 10[°] 10 20 50 time

Existence of distinct time-scales in Modular networks Pan and S

Pan and Sinha, EPL (2009)

 $\begin{array}{ll} \mbox{Consider linearized dynamics around synchronized state} \\ d\theta_i/dt = - (\kappa/k_i) \sum_j L_{ij} \ \theta_j \ , & (i = 1, \ldots, N) \\ & L: \ Laplacian \\ \mbox{Focus on the normal modes:} & \kappa: \ coupling \ strength \ of \ oscillators \\ \phi_i(t) = \sum_j B_{ij} \ \theta_j = \phi_i \ (0) \ exp(-\lambda_i \ t), & (i = 1, \ldots, N) \\ \mbox{B: matrix of eigenvectors} \\ \lambda_i : eigenvalues \end{array} \right\} \ of \ L' = D^{-1} \ L, \\ D: \ diagonal \ matrix \ s.t. \ D_{ii} = k_i \end{array}$

L' \rightarrow L=D^{1/2} L' D^{-1/2} is symmetric, normalized Laplacian $\Rightarrow \lambda_i$ real

Differences in time-scales of modes \Rightarrow gap in spectrum of L

Mode for smallest λ_i : associated with global synchronization Other modes : synchronization within different groups of oscillators

Eigenvalue spectra of the Laplacian

Shows the existence of spectral gap \Rightarrow distinct time scales

Existence of distinct time-scales in Modular networks No such distinction in Watts-Strogatz small-world networks

How about "real" SW networks ?

Pan and Sinha, EPL (2009)

 $1/\lambda$

The networks of cortical connections in mammalian brain have been shown to have <u>small-world</u> structural properties

Our analysis reveals their dynamical properties to be consistent with modular "small-world" networks

Fast synchronization of neuronal activity within a module : The mechanism for efficient neural information processing ?

 $1/\lambda$

How about other kinds of mesoscopic structures ? E.g., Hierarchy

Hierarchical Modular networks

Modules may occur at different levels of hierarchy Level 1: Modules A, B, C, D Level 2: Meta-Modules I, II

- r = 1 : randomly coupled network.
- r = 0: isolated sub-networks (modules)
- 0 < r < 1 : hierarchically structured

network.

1=4

1=3

1=2

Hierarchical modularity in metabolic network

Hierarchical Modular Networks exhibit several distinct time-scales – equal to the number of hierarchical levels (Sinha & Poria, 2011)

Synchronization of phase oscillators in hierarchical modular network show as many distinct time-scales as number of hierarchical levels ... Reflected in the eigenvalue spectra

