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Molecular Networks

Unfolded Folded

Protein Structure = Network of non-covalent
interactions (links) between amino acids (nodes)



Example: Kirbacl.l Potassium ion channel protein
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Comprises 4 identical sub-units

infra-cefiuiar intra-cellular
domain \ domain

To construct the protein contact network from
the structural data...



...obtain the x,y,z coordinates from the PDB data...

ATOM 1 CA ALA A 1 1.00138.36
ATOM 2 CA ALA A 2 1.00137.91
ATOM 3 CA TYR A 3 1.00136.35
ATOM 4 CA GLY A 4 1.00132.72
ATOM 5 CA MET A 5 1.00128.15
ATOM 6 CA PRO A 6 1.00124.35
ATOM 7 CA ALA A 7 1.00116.33
ATOM 8 CA SER A 8 1.00108.62
ATOM 9 CA VAL A 9 1.00102.08
ATOM 10 cA TRP A 10 1.00 95.64
ATOM 11 CA ARG A 11 1.00 89.76
ATOM 12 CA ASP A 12 1.00 84.17
ATOM 13 CA LEU A 13 1.00 77.84
ATOM 14 CA TYR A 14 1.00 74.00
ATOM 15 CA TYR A 15 1.00 77.83
ATOM 16 CA TRP A 16 1.00 81.88
ATOM 17 CA ALA A 17 1.00 77.37
ATOM 18 CA LEU A 18 1.00 75.09
ATOM 19 CcA LYs A 19 1.00 77.44
ATOM 20 CA VAL A 20 1.00 74.87
ATOM 21 CA SER A 21 1.00 77.87
ATOM 22 CA TRP A 22 1.00 79.08
ATOM 23 CA PRO A 23 1.00 72.73
ATOM 24 CA VAL A 24 1.00 68.77
ATOM 25 CA PHE A 25 1.00 69.14
ATOM 26 CA PHE A 26 1.00 71.69
ATOM 27 CA ALA A 27 1.00 72.26
ATOM 28 CA SER A 28 1.00 74.27
ATOM 29 CA LEU A 29 1.00 73.90
ATOM 30 CA ALA A 30 1.00 73.72
ATOM 31 CA ALA A 31 1.00 73.22
ATOM 32 CA LEU A 32 1.00 71.91
ATOM 33 CA PHE A 33 1.00 74.33
ATOM 34 CA VAL A 34 1.00 78.38
ATOM 35 CA VAL A 35 1.00 82.23
ATOM 36 CA ASN A 36 1.00 91.83
ATOM 37 CA ASN A 37 1.00 98.81
ATOM 38 CA THR A 38 1.00 99.51




... and calculate the (Euclidean) distance between
each pair of amino acids...

For any pair F =

the distance is calculated as: \/ (pe — @)+ (py —

...to obtain the
Distance matrix ...
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Protein Contact Network
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Is the protein contact network small-worid ?

Yes, low average path length and high clustering

Unfolding

\

The genesis of small-world nature is from the existence
of cross-links as a result of the folding of the protein

Is the small-world nature of a protein functionally
important ?

The cross-links provide structural stability



Understanding Protein dynamics from network analysis

Protein = elastic network .‘ Source: Wikipedia
of balls (C-a atoms)
connected by springs
(chemical interactions)

Under the

Harmonic potential approxn:
V(x) = V(x=xy)+(| /2)(x-x0)2 O2VI[Ox2 +...
[Force = 0V/0x = 0 at x = x,]

|
PE of network,V = (k/2) y;i=; n (R — R%)? X=X,

V= (k2) Zimy (AR - ARj)z | k: force constant
where R;= R; — R, =(R0ij + AR; — AR)



Understanding Protein dynamics from network analysis

Source:Wikipedia
Under the , /’@
Harmonic potential approxn: g"&*i_ﬁ\ Ry
PE of network,V = (k/2) .-, n (AR;= AR)?, \l /@—
where R;= R, — R, =(R%, + AR, — AR)) < \ /
PE of network,V = (k/2) (dR)T L (dR) &

dR: column vector of fluctuations, i.e., displacements from eqlbm

L: Laplacian or Kirchoff matrix
off-diagonal elements L(i,j) = -1, if d(i,j) < cut-off; L(i,j) = 0, otherwise
diagonal elements L(i,i) = degree k (i) = sum of all links for node i

Correlations between fluctuations,
< dR(i).dR(j) > = (kg T/k)*L-'(i,j)

The vibrational normal modes of the protein are governed
by the eigenvalues of L : small eigenvalue implying large-
scale motion



The Gl‘aph Laplacian See M E | Newman, Networks, Section 6.13

Consider diffusion processes on networks — i.e., a process by which something (a
contagion, a signal or an idea) spreads across a network.

Let this “something” exist initially in varying quantities (say randomly chosen) on the
different noes of a network, with the amount in node i being denoted X.

Also let this “something” diffuse along the links, flowing from node j to an adjacent node i
at a rate governed by the “density gradient” C(X— X)) where C is the diffusion constant.

= the rate at which X; is changingis  dX;/dt = C %; A; (X, — X))

= dX/dt=CXZ ;A X —CX XA =CXZ A X —CXk=CZ,; (A;— 0,k )X

Thus, in matrix form dX/dt=C(A-D)X=-CLX

where

A:Adjaceny matrix, D: diagonal degree matrix,and,L = D — A is the Laplacian matrix

The diffusion equation can be solved in terms of the eigenvectors v, of the Laplacian L:
X(t)= 2, a, (t) v, where the time evolution of the coefficients a, can be expressed in terms
of the eigenvalues 4 = {4} of the Laplacian = a;(t) =a, (0)exp (—C A4 t)

All eigenvalues of the Laplacian matrix are non-negative, the smallest being 4,= 0
corresponding to the eigenvector 1= {l,I,1,I,...,1}



Gaussian Network Model of Protein dynamics See:Wikipedia entry

Tirion (1996)
Potential energy of the network (under harmonic approximation):
i(&R AR;)?
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Assuming that : Probability dlstrlbutlon of fluctuations is Gaussian...
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Therefore correlation between fluctuations can be evaluated from the covariance

kT
<AX - AXT >= f&X - AXTp(AX)dAX = f—fTL; AY -AYT >—< AZ - AZT >— % < AR-ART >

Correlations between fluctuations,< dR(i).dR(j) > = (kg T/y)*T"!(i,j)

The vibrational normal modes of the protein are governed by the
eigenvalues of I': small eigenvalue implying large-scale motion



Understanding Protein dynamics from network analysis
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Understanding Protein dynamics from network analysis

The eigenvector components corresponding to the
smallest non-zero eigenvalues indicate how the

module motions are correlated Similar analysis of the Internet in

Eriksen et al, PRL 90 (2003) 148701
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But the Protein Contact Network also contains links that
correspond to the backbone...

...which does not give us much information about the folded
tertiary structure of the protein

To focus on the cross-links, we need to construct the

Long-range Interaction Network (LIN)

obtained from PCN by excluding links among spatially
neighboring nodes along the backbone

Example:
LIN may be constructed from PCN by removing links between
nodes corresponding to a cumulative spatial distance < |0A.



First, we obtain the

Cumulative Distance Matrix (CDM)

i.e., Euclidean distances between all pairs of C-a atoms
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Next, we obtain the

Backbone Adjacency Matrix (BAM)

from the CDM by retaining only those links corresponding to
Euclidean distance < |10 A

3J53 A

al

100

150

200

250 S
A0 100 150 200 250



Finally, the Long-range Interaction Network (LIN) is obtained by
keeping those links in PCN which do not appear in BAM
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Can we say something about the important
components of the protein using their contact
networks ?

For this we can start by
|dentifying the “central” nodes of the
network



Centrality

Measures the importance of a node (or link) to the entire network

Wide variety of measures for vertex centrality:

|. Degree centrality or degree: number of links a node possesses
In many cases, nodes with the largest connections can be functionally critical —
e.g., in spreading contagion

2. Eigenvector centrality: a node’s importance is based on how many

other important nodes it is connected to
Related measures are Katz centrality and PageRank (used by Google for its web-
search algorithm)

3. Closeness centrality: measured in terms of mean geodesic
distance of a node to other nodes

4. Betweenness centrality: how many times does a particular node
occur along the shortest path between any pair of nodes



Bonacich, 1987

Eigenvector Centrality

In degree centrality,a node is scored in terms of the number of its neighbors
But all neighbors may not be equally important — e.g.,a node connected to two
hubs is more “important” than a node connected to two leaf nodes!

In eigenvector centrality each node is given a score proportional
to the sum of the scores of its neighboring nodes

Let each node i be given a initial score x,(0) [e.g.,= | for all i]

Starting from this initial guess, a better value of the centrality is calculated

x;(1) = 2, A; %,(0) [using the defn of centrality as sum of neighbors centralities]
In matrix notation: x(l) = A x(0)

Repeating this process iteratively for t steps, one gets x(t) = A* x(0)
Expressing x(0) = X. c. v, (i.e., a linear combination of the eigenvectors v. of A)
x(t) =A* 2 cv, =2 ¢ A v, = A ¢ [MA]E v

(where A,> ...> A> ...> A are the eigenvalues of A)

As L/L, <l,all terms other than the first decay as t - 0 = x(t) = c; A, v,
Thus, centrality x satisfies A x = A, X, i.e., it is proportional to the leading
eigenvector of the adjacency matrix A



Closeness Centrality

Measures how close a node is to other nodes of the network in terms of
shortest paths

If d; is the length of a geodesic path from node i to node j,

the mean shortest path (avgd over all N nodes) from i to all other nodes in the
network is Li=(I/N) ; d,

It is low for nodes that are separated from many other nodes only by short
paths — and thus, e.g., communicates with the rest of the network faster
[Alternatively L=(1/(N — 1)) %, d;; as d; can be taken to be zero]

The closeness centrality of a node i is the reciprocal of its avg
distance (i.e., C, = |/L)) from all other nodes of the network

If the network has multiple disconnected components,and i and j belong to
different components, then d; is infinite

To resolve this problem closeness centrality can be defined in terms of
harmonic mean of the distances between nodes: C=(I/(N - 1)) %, ., (1/d;)



doi}10.1016/j.jmb.2004.10.055 J. Mol. Biol. (2004) 344, 1135-1146 Use Of Closeness
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Network Analysis of Protein Structures Identifies
Functional Residues

Gil Amitai, Arye Shemesh, Einat Sitbon, Maxim Shklar, Dvir Netanely
llya Venger and Shmuel Pietrokovski*

‘—4

Closeness centrality values
of ERK2 MAP kinase.The

active site and ATP-Mg2+

binding region have high
Figure 5. Closeness analysis of subtilisin DY protease. Closeness residue values are shown on the surface of the protein
(PDB accession 1BH6). Closeness increases from blue to red. The left view shows the protease active site with a synthetic Closen ess Val ues.
inhibitor, shown in sticks. The right view is related to the top by about 90° counterclockwise turn on the Y axis. It shows a
Na atom in cation binding site B. Note the infrequency of residues with high closeness values and their exact overlap
with the subtilisin active and cation binding sites.



Freeman, 1977

Betweenness Centrality

The importance of a node is measured in terms of how many geodesic paths in
the network passes through it — nodes having high centrality of this kind will
have large control over signals being sent by different nodes across the network

Consider the set of all geodesic paths in an undirected network in which there
is at most one geodesic path between any pair of nodes
Betweenness centrality (BC.) of a node i is the number of such paths that

include i: BC. = ZP’q n‘Pq ,
where n"Pq = | if node i is part of the geodesic path between p and g
n' ., = 0 otherwise

Pq

More generally, there can be more than one geodesic path between any pair of
nodes — the standard extension is to give each such path between a pair of
nodes i,j,a weight that is reciprocal of the total number of geodesic paths g;

: - i
between the two nodes: BC, =2, (n'),/g,)



PHYSICAL REVIEW E. VOLUME 65. 061910
Small-world view of the amino acids that play a key role in protein folding

M. Vendruscolo.! N. V. Dokholyan.? E. Paci.!* and M. Karplus®3
IOxford Centre for Molecular Sciences, Cenfral Chemistiv Laboratory, South Parks Road, OX1 3Q0H Oxford, United Kingdom
2Depm;'f‘mer.'r of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
3Laboratoire de Chimie Biophysique, ISIS, Université Louis Pasteur, 4 rue Blaise Pascal, 67000 Strasbourg, France
(Received 25 May 2001: revised manuscript received 21 March 2002; published 25 June 2002)

We use geometfrical considerations to provide a different perspective on the fact that a few selected amino
acids, the so-called “key residues,” act as nucleation centers for protein folding. By constructing graphs
corresponding to protein structures we show that they have the “small-world™ feature of having a limited set
of vertices with large connectivity. These vertices correspond to the key residues that play the role of “hubs”
in the network of interactions that stabilize the structure of the transition state.

Use of Betweenness
Centrality to identify
residues that
contribute most to
making the contact
network “small-
world”

Betweenness B in the

DOI: 10.1103/PhysRevE.65.061910 PACS number(s): 87.15.By, 64.60.Cn, 87.10.+e
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“For the transition states of proteins ... there is a small number (between 2 and 4) of
residues (or regions) that have large betweenness values... Analysis of the transition states of
these proteins have shown that there are certain residues, called key residues, which are critical
for forming the nucleus that encodes the overall native structure... In all cases, they involve

residues with large betweenness”



Can we say something about the important
components of the protein using their contact
networks ?

|dentifying the network core of the proteins

Distinct from earlier notions of structural “core” as the set
of residues which are completely inaccessible to solvent

The core may contain functionally critical residues !



Many networks possess a
Core-periphery organization
Q)




K-Core Decomposition

Core decomposition, introduced by Seidman (1983), is a
technique to obtain the fundamental structural organization of
a complex network through a process of successive pruning

Degree assortative networks show prominent core-periphery
organization

The k-core decomposition was recently applied to a number
of real-world networks:

— the Internet(Alvarez et al, 2005 )

- WWW (Kirkpatrick et al, 2005),

— neuronal network of C. elegans (Chatterjee & Sinha, 2007) etc.

The most efficient spreaders are those located within the core
of the network ( Kitsak et al, 2010)



K-Core Decomposition

Defn: The k-core of a network is the subnetwork containing all
nodes that have degree at least equal to k.

An iterative procedure for determining the k-core is
— (i) to remove all nodes having degree less than k,

— (i) check the resulting network to see if any of the remaining nodes now
have degree less than k as a result of (i), and if so

— (iii) repeat steps (i)-(ii) until all remaining nodes have degree at least equal
to k.

This resulting network is the k-core of the original network.

In particular, the 2-core of a network is obtained by eliminating all
nodes that do not form part of a loop (a closed path through a
subset of the connected nodes).

There exist at least k paths between any pair of nodes belonging to
a k-core.



Seidman (1983)

k-Core Decomposition




Example: K-Core Decomposition of a Protein
PDB ID : 3JS3 A (3-dehydroquinate dehydratase)
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2-Core = 253 Residues

Figure created by Arnold Emerson

2-Core = 253 Nodes
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3-Core = 253 Residues

Figure created by Arnold Emerson

3-Core = 253 Nodes
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4-Core = 253 Residues

Figure created by Arnold Emerson

4-Core = 253 Nodes
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5-Core = 253 Residues

Figure created by Arnold Emerson

5-Core = 253 Nodes
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6-Core = 252 Residues 6-Core = 252 Nodes

Figure created by Arnold Emerson Figure created by Arnold Emerson



7-Core = 250 Residues

Figure created by Arnold Emerson

7-Core = 250 Nodes
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How is core order membership distinct from

other node-specific measures !

Highest betweenness-centrality

Highest-order core

/

Highest degree




Questions

*What is special about residues belonging
to the inner core of a protein !

*Could they be functionally important ?

*How to check this hypothesis ?



Functional Importance of inner core residues

* Solvent Accessibility

— Provides information about whether amino acid residues in
proteins with known structures are accessible to solvent

Inner core residues have lower accessibility than those at the
periphery
 Conservation Score

— Evolutionary conservation of residues in proteins obtained
from homology

 Mutation Analysis

— Predicts whether an amino acid substitution affects protein

function based on sequence homology and the physical
properties of amino acids.



*Inner-core residues more conserved than those at
periphery

* Mutation of inner core residues are more likely to be
deleterious

*Suggests possible critical functional role of those residues
— e.g., as ligand binding sites or for imparting structural
stability

*Relevant for pharmaceutical treatment of infectious
diseases:

Core-analysis may help in identifying target sites in
pathogen proteins for devising ligands to bind to those
sites



