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Fitness Landscapes

Sewall Wright pioneered the description of how genotype or
phenotypic fitness are related in terms of a fitness landscape

(an imaginary surface in genotype space, each genotype next to
others differing by a single mutation and assigned a fitness, on
which trajectories due to evolutionary dynamics can be visualized)
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Sewall G.Wright
(1889 —1988)

Mean population fitness
of a genotype is
represented by height of
the surface.

Natural selection would
lead to a population
climbing the nearest peak
in the fitness landscape,
while genetic drift causes
random wandering

Image from Sewall Wright, "The Role of
Mutation, Inbreeding, Crossbreeding, and
Selection in Evolution," 6th Int Congress of
Genetics, Brooklyn, NY(1932).



Networks: a better description

+ ........ wild type
I/ alternative allele
on locus A

abede ... alternative alleles
on all five loci

Fi6. 1.—The combinations of from 2 to 5 paired allelomorphs.

Sewall Wright.“Surfaces of selective value revisited”. American Naturalist 131 (1988) 115-123



Adaptive walks in Protein Space

Wright’s genotype space
concept was extended to that
of proteins by Maynard Smith
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J. Maynard Smith
(1920 —2004)
Space of all proteins comprising

N amino acids: 20N vertices
each having k=19N one-mutant
neighbors.

Each protein assigned a “fitness”
with respect to a specific
property, e.g., binding to ligand.

Natural Selection and the Concept
of a Protein Space

The model of protein evolution I want to discuss is
best understood by analogy with a popular word game.
The object of the gameis to pass from one word to another
of the same length by changing one letter at a time, with
the requirement that all the intermediate words arc
meaningful in the same language. Thus WORD can be
converted into GENE 1 the minimum number of steps,
as follows:

WORD WORE GORE GONL GENE

This is an analogue of evolution, in which the words
represent proteins; the letters represent amino-acids;
the alteration of a single letter corresponds to the simplest
evolutionary step, the substitution of one amino-acid for
another; and the requirement of meaning corresponds to
the requirement that each unit step in evolution should
be from one functional protein to another. The reason
for the last requirement is as follows: suppose that a
protein A B C D . . . exists, and that a proteina b C D
. . . would be favoured by selection if it arose. Suppose
further that the intermediatesa BC D ... and AbCD

. are non-functional. These forms would arise by
mutation, but would usually be eliminated by selection
before a second mutation could occur. The double step
fromabCD...to A B CD would thus be very unlikely
to oceur. Such double steps with unfavourable inter-
mcodiates may occasionally occur, but are probably too
rare to be important in evolution.
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Epistatic interactions

J. Arjan G.M. de Visser and Joachim Krug, Nature Rev Genetics (2014):

Wright'’s idea to explicitly consider the relationship between
genotypic space and fitness came from his conviction that, different
from Ronald Fisher’s additive view of genetics, real fitness landscapes
are likely to be complex owing to pervasive epistasis

Epistasis
Any kind of genetic interaction that leads to a dependence of
mutational effects on the genetic background.

Ruggedness of the fitness landscape arises through multi-
dimensional epistasis



The NK model of fithess landscape
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Empirical study of fitness landscapes

A Genotype selection
A Ab

Ac o0
000 000\ /111 010 001
000 111 i;_,.i;_,._,,
111
100--- 110 /

1
B Mutant construction 000 010 101 111

001 011

I J.Arjan G.M. deVisser and Joachim

Measure fitness or proxy Krug, Nature Rev Genetics (2014)



Experimentally accessible
fithess landscapes

Result of in vitro molecular
evolution beginning with a
defective fd phage

carrying a random
polypeptide of 139 amino
acids in place of the g3p 1
minor coat protein D2
domain,

which is essential for
phage infection.

Hayashi et al (2006)

o 0 :
Protein landscapes:

Y Hayashi et al.“Experimental rugged
fitness landscape in protein sequence
space” PLoS One 1 (2006) e96.
RNA landscapes:

D E Jason et al “Rapid construction of empirical RNA
fitness landscapes” Science 330 (2010) 376-379.
Retroviruses:

R D Kouyos et al Exploring the complexity of the HIV-I fitness landscape. PLoS Genetics 8 (2012)
el002551
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Attractor dynamics of network
UP states in the neocortex At=58 % 5 ms
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Chemotactic response of coliform bacteria

Protein molecules as computational
elements in living cells
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Hopfield Model: An Attractor Network
Model for Associative Memory

Hopfield and Tank, PNAS, 1982.

1 Network of inter-connected binary
state “neurons”

d x. ={-1 or OFF+1 or ON}. X. .
S . Wi = Wy
] Activation of the neurons are defined O X;
- A \»
by x; = sgn(2; w; X;) O
" Sgn (q) =—1,ifq<0;=+I
otherwise

* T=0 or deterministic dynamics
1 Symmetric connection weights,
"lew; = w;
4 w,.=0 (No self connections)



Learning
Modifying the synaptic weights by Hebb rule

A-' M - 'y
e Donald O Hebb (190
\)‘//4 ciiont enouan 10 mogerHEbD’s hypothesis (1949)

an action potential.
Neurons that fire together, wire together

Eyrs Y 1 M
e T W, = — Z EPEP
i Heavy simultaneous l-j ; J

A

4.85)

=} achvity occurs

in both neurons

-/k glp i component of the pt" binary pattern

Four stored patterns in simulation

~..0 Neuron's synapse,
“4 strengthened by
this simultaneous
activity, triggers
an action potantial.

http://thebrain.mcgill.ca



http://www.scholarpedia.org/article/File:DonaldOldingHebb.jpg

Initial State Repeated 1 week Later

.. Hebb Rule and Biology

Long-term potentiation

LTP

First empirical observation (Lomo, 1966)
supporting Hebb’s hypothesis

/\h [\_ Persistent increase in synaptic strength

after high-freq stimulation of synapse

Spike-timing dependent plasticity
spike-based formulation of Hebb rule

Bi & Poo, 1998

(Markram, 1995) = ' | | ' p"e
synapse strengthened ‘ Pre-synaptic j g 20 oy T :oo T
if presynaptic neuron 3? 150} ’
“repeatedly or % . o o o go"
persistently takes part 2 o T ° 980 >
in firing” the £ sl ° oy
postsynaptic one Q 2 :
(Hebb 1949) Post-synaptic i 0200 -150 -100 50 0 50

Pre/post spike interval (ms)




Example: A 3-node Hopfield model

p=2:(l,-1,I)and (-1,1,-1) are the stored memories

Y3

1 M
W, = — E PEP
i Np:1 él 5]

Stable state
1L 1,-1) &
o -2 2 -
1 Stable state :
W=—--2 0 =2 (1,-1,1)
3
2 =2 0

(-1,-1,-1) (I,-1,-D




Recall dynamics of Hopfield Network

Start from arbitrary initial configuration of {x}
(dWhat final state does the network converge ?
(J Evaluate an ‘energy’ value associated with the
network state: _ _%Ziwﬁ X, X,
j o=l

ey

(1 System converges to an attractor which is a

local/global minimum of E
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Associative Memory as
Attractor Network

Memories stored as attractors
of network dynamics

When presented with a novel
input, the network eventually
converges to the stored
pattern that is “closest” to it
(i.e., to the pattern in whose
basin of attraction the input lies).
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