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Example: scale-free networks

Barabasi and Albert (1999): In many large networks the vertex

connectivities follow a scale-free distributions, i.e., the degree distrn has a
power law tail: P(k) ~ k.

Albert & Barabasi, 2002
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In contrast,
ER random networks (start with N nodes and connect each pair with
probability p) have Poisson degree distrn: P(k) = e (AX/k!)



How can scale-free networks evolve ?
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The Price-Barabasi-Albert preferential attachment scheme: N o=3
(A) Networks expand continuously by addition of new 107
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(B) New nodes attach preferentially to nodes already well- n‘x--_- 10°
connected, i.e., probability that a new node is connected ;
to a node of degree k; is I1(k)=k/Zk; (“linear” scheme) 0 _ N
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Resulting network degree distribution: P(k)~k -3 1070t o e
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Characterised by highly connected “hubs”, which hold the network together

Achilles” heel: Network fragile to directed attack on

“hubs”



The Mechanism:

A Cumulative Advantage Process

Derek | de Solla Price proposed in 1976 the earliest mathematically detailed =\

mechanism by which scale-free degree distribution can arise in the context

of networks of citations between scientific papers

1922-1983
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A General Theory of Bibliometric and Other Cumulative

Advantage Processes”

Derek de Solla Price

Department af Hisrory of Science and Medicine
Yale University

New Haven, CT 06520

A Cumulative Advantage Distribution is proposed
which models statistically the situation in which success
breeds success. It differs from the Negative Binomial Dis-
tribution in that lack of success, being a non-event, is
not punished by increased chance of failure. It is shown
that such a stochastic law is governed by the Beta
Function, containing only one free parameter, and this is
approximated by a skew or hyperbolic distribution of
the type that is widespread in bibliometrics and diverse
social science phenomena. In particular, this is shown to

be an appropriate underlying probabilistic theory for the
Bradford Law, the Lotka Law, the Pareto and Zipf Dis-
tributions, and for all the empirical results of citation
frequency analysis. As side results one may derive also
the obsolescence factor for literature use. The Beta
Function is peculiarly elegant for these manifold pur-
poses because it yields both the actual and the cumula-
tive distributions in simple form, and contains a limiting
case of an inverse square law to which many empirical
distributions conform.

Derek ] de Solla Price



Why the degree distribution is scale-free

From Y 0
Statistical mechanics of complex M”W(;J with f=3. (81)
networks Equation (81) indicates that the degree of all nodes

evolves the same way, following a power law, the only
difference being the intercept of the power law.
Using Eq. (81), one can write the probability that a

Reka Albert and Albert-Laszlo 'Barabasi
Rev Mod Phys 74 (2002) 47-97

Continuum theory: The continuum approach intro-
duced by Barabasi and Albert (1999) and Barabasi, Al-
bert, and Jeong (1999) calculates the time dependence
of the degree k; of a given node i. This degree will in-
crease every time a new node enters the system and
links to node i, the probability of this process being
I1(%k;). Assuming that k; is a continuous real variable,
the rate at which k; changes is expected to be propor-
tional to II(k;). Consequently k; satisfies the dynamical
equation

dk ; k;
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=mll(k;)=

m 5= (79)
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The sum in the denominator goes over all nodes in the
system except the newly introduced one; thus its value is
Zikj=2mit—m, leading to
dk; k;
a2t

dt

(80)

The solution of this equation, with the initial condition
that every node i at its introduction has k;(1;)=m, is

node has a degree k;(f) smaller than k, P[k;(r)<<k], as

JH”'BI')

Plk(1)<k]= P[z > (2)

Assuming that we add the nodes at equal time intervals
to the network, the t; values have a constant probability
density

1

P(t)= mgti’ (83)
Substituting this into Eq. (82) we obtain
m'"Pt) m"'Py
P\ | = R gy ®9)
The degree distribution P(k) can be obtained using
aP[k(y<k] 2mYBr 1
T ok mgrt KD )
predicting that asymptotically (1—=)
P(k)~2m"Pk™Y with y= ,IE +1=3 (86)

being independent of m, in agreement with the numeri-
cal results.



Importance of “hubs”

Random failure of nodes typically has little effect on scale-free network as most nodes
connect only to a few other nodes: Robustness to random node removal
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However targeting the highest-degree nodes (hubs) has devastating effect on the network —
most nodes become isolated on removing a few hubs: Vulnerability to targeted removal of hubs



No threshold for epidemics in
scale-free networks

Networks of sexual relations have been claimed to be scale-free !

A few highly promiscuous individuals act as “hub” nodes
May play a crucial role in spreading sexually transmitted diseases !

If the contact structure of a disease is network with inhomogeneous

degree distribution, the condition for occurrence of an epidemic is:
R=bN/g > <k>/<k?>

b: rate of infection spreading, g: recovery rate (=|/period of infection)

Initial popn of susceptibles, S(t = 0) = N, the total population

For a scale-free network having degree exponent 2<a, <3, <k?> —0
—There is no epidemic threshold !

Even diseases with extremely low transmission probabilities are likely
to cause a major outbreak involving a signficant fraction of population



Alternative to preferential attachment
Duplication and Divergence

While preferential attachment may be appropriate for explaining scale-free character of
World-Wide Web, it is less clear how it might play a role in biological systems, e.g., the
protein-protein interaction network that has been claimed to be scale-free

As most biological systems have emerged through a long history of evolution, can

evolutionary processes give rise to a network with scale-free property !
Vazquez et al, ComPlexUs (2003)
In the Duplication-Divergence mechanism, a node along with all its interactions are

duplicated with some probability p and then some of the interactions are mutated with
probability ¢ = leads to a networks with scale-free degree distribution

Target Protein Duplication Divergence
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Are biological networks really scale-free ?

log(N(k))

[ Scale-free networks characterized by long-tailed degree distribution (power
laws) have been proposed as unifying concept for biological complex systems
— have been reported in metabolic, protein, and gene interaction networks.

( But many of these reports of scale-free networks are possibly just a result of
bad statistics (a combination of extremely limited data and faulty analysis) !

 Almost any distribution seen over a small enough range in a double
logarithmic scale would appear linear — and wrongly interpreted as power law

Guelzim et al., 2002
[ To establish power laws from finite data

o

m - ° . .
o _Is this data really one has to use unbiased techniques such as
< - indicative of a maximum likelihood estimation.
? : :
" power law ! O Recent rigorous re-analysis of many of the
data sets used by earlier studies that

N claimed power-law degree distributions for
- - - protein and gene interaction networks have

yeast transcriptional . .
o .| resulatory network shown little evidence for scale-free nature!
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Nodes may prefer to connect to nodes with
similar or dissimilar connectivity
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Two networks may have the same degree distribution but different connectivity patterns
overall because high-degree nodes may prefer to connect to other high-degree nodes
(positive degree correlation) or may want to avoid them (negative degree correlation)



Measuring degree correlations

Random networks (e.g., random Price-Barabasi-Albert networks) do not
exhibit any correlations between the degrees of connected nodes, i.e.,
The probability a link connects nodes of degrees k & Kk’ is

P(k,k) = k P (k) k’ P (k") /<k>? (degree-uncorrelated network)

Most real-life networks exhibit degree correlations measured by
o« o _[\E jJELJ _[\— _(} —I_Jlr_ }
Assortativity, r = - L fzi=l 0" L 2ict 2 \Ji i

1 ;L 1 ;~—L
(Newman, 2002) 1 (it 32 + k) — (£ (Zily 30 + ka)))?

ji» k:: degrees of vertices at ends of the i-th edge L: total number of links

r < 0: disassortative mixing r > 0: assortative mixing

Nodes of high degree mostly have  Nodes of high degree mostly
nearest nbrs of low degree have nearest nbrs of high degree
E.g.,most biological & technolgical  E.g., social networks

networks



Macroscopic properties of networks

avg degree lusteri d
Newman, SIAM Review, 2003 path length distrn clustering egree
coefficient correln
avg exponent
network type #nodes n | #links m |degree ¢ a | CW 2 r
film actors undirected 440913 25516 482 113.43 3.48 2.3 0.20 0.78 0.208
company directors undirected TGET3 55302 14.44 4.60 — | 0.59 0.58 0.276
math coauthorship undirected 253339 496 489 3.92 7.57 - | 0.15 0.34 0.120
physics coauthorship | undirected 52 909 245 300 9.27 6.19 - | 0.45 0.56 0.363
@ | biclogy coauthorship | undirected 1520251 11 803 064 15.53 4.92 — | 0.088 0.60 0.127
% telephone call graph undirected 47 000 000 S0 000 000 3.16 21
email messages directed 59912 86 300 1.44 495 | 1.5/2.0 0.16
email address books directed 16 881 57029 3.38 5.22 - | 017 0.13 0.092
student relationships | undirected 573 477 1.66 16.01 — | 0.005 [ 0.001 —0.029
sexual contacts undirected 2810 AN
o WWW nd.edu directed 269 504 1497135 5.55 11.27 2.1/24 0.11 0.29 —0.067
é WWW Altavista directed 203549046 | 2130 000 000 10.46 | 16.18 | 2.1/2.7
g citation network directed 783339 6716 198 8.57 3.0/
né Roget’s Thesaurus directed 1022 5103 4.99 4.87 0.13 0.15 0.157
" | word co-occurrence undirected 460 902 17 000 000 70.13 T 0.44
Internet undirected 10697 31902 5.08 3.31 2.5 0.035 [ 0.39 —0.189
= | power grid undirected 4941 6 504 2.67 18.99 - | 0.10 0.080 —0.003
% train routes undirected 587 19603 66.79 2.16 - 0.69 —0.033
2 | software packages directed 1439 1723 1.20 2.42 1.6/14 0.070 | 0.082 —0.016
"§ software classes directed 1377 2213 1.61 1.51 - | 0.033 | 0.012 —0.119
| electronic cirenits undirected 24097 53 248 4.34 11.05 3.0 | 0.010 | 0.030 —0.154
peer-to-peer network | undirected 880 1296 1.47 4.28 2.1 | 0.012 | 0.011 —0.366
metabolic network undirected T65 3686 9.64 2.56 2.2 0.060 0.67 —0.240
_Ei protein interactions undirected 2115 2240 212 6.30 24 0.072 0.071 —0.156
# | marine food web directed 135 508 4.43 2.05 - | 0.16 0.23 —0.263
E freshwater food web directed 02 997 10.84 1.90 — | 0.20 0.087 —0.326
neural network directed 307 2359 T.68 3.97 - 0.18 0.28 —0.226




