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Theoretical understanding of networks 

• Regular lattice or grid (Physics) 
• average path length ~ N (no. of nodes) 

• clustering high  

• delta function distribution of degree (links/node) 

  

•Random networks (Graph theory) 
Also known as Erdos-Renyi networks 

• average path length ~ log N 

• clustering low 

• Poisson distribution of degree 



Random networks  

Paul Erdos 

1913-1996 

Alfred Renyi 

1921-1970 

Erdos-Renyi model (1959): Two closely 

related probability-based models for 

generating random networks 
Behavior of random networks is typically studied 

in the limit where the number of nodes N 

 The G(N,L) model: when any member of a family of all graphs 

with N nodes and L links is chosen uniformly at random. 
Example: G(3,2) comprises three possible networks of three nodes A,B and C 

such that each of Graph 1: {AB,BC}, Graph2: {AC,AB} and Graph 3: {AC,BC} can 

be picked with probability 1/3 

 The G(N,p) model: when a network is constructed by randomly 

placing a link between each possible pair of nodes with a 

probability p (0<p<1) 
Example: G(3,0.5) comprises the ensemble of all possible networks of three nodes 

A,B and C such that each of {AB,BC,AC} are inserted or not, based on tossing a 

fair coin 

As N, if p  2ln(N)/N then a network will almost surely be connected. 



Percolation & Random networks  
A largest connected component (LCC, also referred to as giant component) is a 

connected component (for directed networks, strongly connected) whose size Nl 

is a finite fraction of that of the size N of the entire network, even as the network 

becomes larger and larger, i.e., LimN Nl / N = c > 0. 

In the G(N,p) random network model, the LCC size is  

Nl =1 when p = 0 (no nodes have any links) and Nl =N when p =1 (clique)  

As p is gradually increased from 0 to 1, a phase transition occurs:  

the fraction Nl / N suddenly increases from 0 to a finite value (>0) 

at the critical value of p,    pc = 1/N  
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This concept is related to the theory of bond percolation 
The Question: Consider a 2-dimensional lattice of N  N 

sites in which the links between any two neighboring sites is 

open with probability p [and hence, closed with prob (1 – p) ]. 

What is the probability that a connected path exists from one 

side of the lattice to the other ? 

[Percolation theory has origins in understanding the process of transport through porous 

medium, e.g., of toxic chemical molecules through the filtering agent of a gas mask] 
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The average path length in the random 

network is L   log N / log k 
 

Intuition:  

Locally, a random network G(N,p) with very small p 

– as cycles or closed loops involving only a few 

nodes are unlikely – will be approximately like a 

tree 

 

The average number of neighbors located at 

distance d away from a node is : 

Nd = kd  

 N = k  + k2  + k3 + … + kd   kd  

 

The average clustering coefficient in a G(N,p) random network is 

approximately C  p ≈ k / N 
This is because if you randomly select a node i and look at two neighboring 

nodes j and k connected to it, the probability that j & k will be connected is just p 

Path length & Clustering in Random networks 



Degree distribution of Random networks  
The G(N,p) model:  

A given node in the network is connected with independent probability p to 

each of the N – 1 other nodes.  

Thus the probability of being connected to k (and only k) other nodes is  

pk(1 – p)N – 1 – k 

There are N – 1Ck ways to choose those k other vertices, and hence the total 

probability of being connected to exactly k others is 

pk = N – 1Ck p
k(1 – p)N – 1 – k 

which is the Binomial distribution having mean Np and variance Np(1 – p) 

  

As N becomes large with p being extremely 

small (0), such that Np = k =   is finite, 

this tends to the Poisson distribution 

P(k) = e- (k/k!) 
Both the mean and variance is given by . 

For large values of  this converges to the 

bell-shaped Gaussian or Normal distribution 
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Empirical networks are not random – 

many have certain structural patterns 

Theoretical understanding of networks 

• Regular lattice or grid (Physics) 
• average path length ~ N (no. of nodes) 

• clustering high  

• delta function distribution of degree (links/node) 

  

•Random networks (Graph theory) 
Also known as Erdos-Renyi networks 

• average path length ~ log N 

• clustering low 

• Poisson distribution of degree 



Regular Network Random Network “Small-world” Network 

Increasing Randomness 

p = 0 p = 1 0 < p < 1 

Example: small-world networks 

   p: fraction of random, long-range connections 

Watts and Strogatz (1998): Many biological, technological and social 
networks have connection topologies that lie between the two 
extremes of completely regular and completely random. 



“It’s a small world”: The Milgram Experiment 
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Milgram, 1967 

Stanley Milgram (1933-1984), US social psychologist 

 

Arbitrarily selected individuals in Nebraska were asked 

to generate acquaintance chains (knowing  on first name 

basis) connecting them to a target individual in Boston 

 

In one experiment, 64 of the 296 chains initiated 

eventually reached the target – the mean number of 

intermediaries between source and target being slightly 

larger than 5  

 Six degrees of separation  



Small-world networks can be highly clustered (like regular networks ),  

yet have small characteristic path lengths (as in random networks ). 

Watts & Strogatz, 1998 

“Small world”: Local properties of regular networks 

but global properties of random networks 

L 

Characteristic path length  

: shortest distance            

between nodes i and j 

Clustering coefficient  

where 

Alternatively 

Alternatively 



Implication:  

“Control the truck-drivers” 

Key Results: 

• Critical infectiousness rhalf, at which the 

disease infects half the population, 

decreases with p 

• Time required for a maximally infectious 

disease (r = 1) to spread throughout the 

entire population T(p) has same form as 

characteristic path length L(p)  

 rewiring only a few links in the original 

lattice causes global infection to occur almost 

as fast as in random network 

Watts & Strogatz, 1998 

Epidemics on “Small world” 

Dynamical process: 

• Time t = 0: single infected individual present. 

• Each infected agent can infect any of its 

neighbours with probability r.  

• Infected individuals removed (by immunity or 

death) after unit period of sickness.  



Do small-world networks occur in real life ? 

# nodes Avg degree Avg path length Clustering coefficient 

Albert & Barabasi, 2003 


