
Antichaos and Adaptation 
Biological evolution may have been shaped by more than just 

natural selection. Computer models suggest that certain 
complex systems tend toward self-organization 

M athematical discoveries are in­
viting changes in biologists' 
thinking about the origins of 

order in evolution. All living things are 
highly ordered systems: they have intri­
cate structures that are maintained and 
even duplicated through a precise bal­
let of chemical and behavioral activi­
ties. Since Darwin, biologists have seen 
natural selection as virtually the sole 
source of that order. 

But Darwin could not have suspected 
the existence of self-organization, a re­
cently discovered, innate property of 
some complex systems. It is possible 
that biological order reflects in part a 
spontaneous order on which selection 
has acted. Selection has molded, but 
was not compelled to invent, the na­
tive coherence of ontogeny, or biologi­
cal development. Indeed, the capacity 
to evolve and adapt may itself be an 
achievement of evolution. 

The studies supporting these conclu­
sions remain tentative and incomplete. 
Nevertheless, on the basis of mathe­
matical models for biological systems 
that exhibit self-organization,. one can 
make predictions that are consistent 
with the observed properties of organ­
isms. We may have begun to understand 
evolution as the marriage of selection 
and self-organization. 

To understand how self-organization 
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can be a force in evolution, a brief 
overview of complex systems is nec­
essary. During the past two decades, 
there has been an explosion of interest 
in such systems throughout the natural 
and social sciences. The efforts are still 
so new that there is not yet even a gen­
erally accepted, comprehensive defini­
tion of complexity. 

Yet certain properties of complex 
systems are becoming clear. One phe­
nomenon found in some cases has al­
ready caught the popular imagination: 
the randomizing force of determinis­
tic "chaos." Because of chaos, dynamic, 
nonlinear systems that are orderly at 
first may become completely disorga­
nized over time. Initial conditions that 
are very much alike may have mark­
edly different outcomes. Chaos in the 
weather is exemplified by the so-called 
butterfly effect: the idea that a butterfly 
fluttering in Rio de Janeiro can change 
the weather in Chicago. 

Chaos, fascinating as it is, is only 
part of the behavior of complex sys­
tems. There is also a counterintuitive 
phenomenon that might be called an­
tichaos: some very disordered systems 
spontaneously "crystallize" into a high 
degree of order. Antichaos, I believe, 
plays an important part in biological 
development and evolution. 

The discovery of antichaos in biolo­
gy began more than 20 years ago with 
my efforts to understand mathemat­
ically how a fertilized egg differenti­
ates into multitudes of cell types. Since 
then, mathematicians, computer scien­
tists and solid state phYSicists, among 

LOOPS OF DNA extruded by this bac­
terium contain thousands of genes. The 
genes act as a self-regulating network, 
turning one another on and off. Even 
more complex genetic circuits occur in 
higher cells. Computational models are 
now hinting at how such complex sys­
tems can spontaneously organize them­
selves to exhibit stable cycles of gene 
activity-an essential feature of all life. 

them my many colleagues at the Santa 
Fe Institute in New Mexico, have made 
substantial progress. 

B iology is filled with complex sys­
tems: the thousands of genes 
regulating one another within a 

cell; the network of cells and molecules 
mediating the immune response; the 
billions of neurons in the neural net­
works underlying behavior and learn­
ing; the ecosystem webs replete with 
coevolving species. Of these, the self­
regulating network of a genome (the 
complete set of genes in an organism) 
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offers a good example of how anti­
chaos may govern development. 

The genome of a higher organism 
such as a human being encodes the in­
formation for making about 100,000 
different proteins. One of the central 
dogmas of developmental biology is 
that liver cells, neurons and other cell 
types differ because varied genes are 
active in them. Yet it is now also clear 
that all the cells in an organism contain 
roughly the same genetic instructions. 
Cell types differ because they have dis­
similar patterns of genetic activity, not 
because they have different genes. 

A genome acts like a complex paral­
lel-processing computer, or network, in 
which genes regulate one another's ac­
tivity either directly or through their 
products. The coordinated behavior of 
this system underlies cellular differ­
entiation. Understanding the logic and 
structure of the genomic regulatory 
system has therefore become a central 
task of molecular biology. 

Mathematical models can help re­
searchers understand the features of 
such complex parallel-processing sys­
tems. Every complex system has what 
can be called local features: these char­
acteristics describe how individual ele-

ments in the system are connected and 
how they may influence one another. 
For example, in a genome the elements 
are genes. The activity of any one gene 
is directly regulated by fairly few other 
genes or gene products, and certain 
rules govern their interactions. 

Given any set of local features, one 
may construct a large ensemble, or 
class, of all the different complex sys­
tems consistent with them. A new kind 
of statistical mechanics can identify the 
average features of all the different sys­
tems in the ensemble. (Traditional sta­
tistical mechanics, in contrast, averages 
over all the possible states of a single 
system.) Individual systems in the en­
semble might be very different; none­
theless, the statistically typical behav­
iors and structures are the best hypoth­
esis for predicting the properties of any 
one system. 

The approach begins by idealizing 
the behavior of each element in the 
system-each gene, in the case of the 
genome-as a simple binary (on or 
off) variable. To study the behavior of 
thousands of elements when they are 
coupled together, I used a class of sys­
tems called random Boolean networks. 
These systems are named after George 

Boole, the English inventor of an alge­
braic approach to mathematical logic. 

I n a  Boolean network, each variable 
is regulated by others that serve 
as inputs. The dynamic behavior of 

each variable-that is, whether it will 
be on or off at the next moment-is 
governed by a logical Switching rule 
called a Boolean function. The func­
tion specifies the activity of a variable 
in response to all the possible combi­
nations of activities in the input var­
iables. One such rule is the Boolean 
OR function, which says that a variable 
will be active if any of its input vari­
ables is active. Alternatively, the AND 
function declares that a variable will 
become active only if all its inputs are 
currently active. 

One can calculate how many Boolean 
functions could conceivably apply to 
any binary element in a network. If a 
binary element has K inputs, then there 
are 2K possible combinations of inputs 
it could receive. For each combination, 
either an active or inactive result must 
be speCified. Therefore, there are 2 to 
the 2K power possible Boolean switch­
ing rules for that element. 

The mathematically idealized ver-
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sions of biological systems I shall dis­
cuss are called autonomous random 
Boolean NK networks. They consist of 
N elements linked by K inputs per ele­
ment; they are autonomous because 
none of the inputs comes from outside 
the system. Inputs and one of the pos­
sible Boolean functions are assigned at 
random to each element. By assigning 
values to Nand K, one can define an en­
semble of networks with the same local 
features. A random network is one sam­
pled at random from this ensemble. 

Each combination of binary ele­
ment activities constitutes one network 
"state." In each state, all the elements 
assess the values of their regulatory 
inputs at that moment. At the next 
clocked moment, the elements turn on 
or off in accordance with their individ­
ual functions. (Because all the elements 
act simultaneously, the system is also 
said to be synchronous.) A system pass-

es from one unique state to another. 
The succession of states is called the 
trajectory of the network . 

A critical feature of random Boole­
an networks is that they have a finite 
number of states. A system must there­
fore eventually reenter a state that it 
has previously encountered. Because its 
behavior is determined precisely, the 
system proceeds to the same succes­
sor state as it did before. It will conse­
quently cycle repeatedly through the 
same states. 

Such state cycles are called the dy­
namic attractors of the network: once 
a network's trajectory carries it onto 
a state cycle, it stays there. The set of 
states that flow into a cycle or that lie 
on it constitutes the "basin of attrac­
tion" of the state cycle. Every network 
must have at least one state cycle; it 
may have more. 

Left to itself, a network will eventual-

Boolean Functions and State Cycles 

B oolean functions are logical rules that describe how binary (on or off) 
elements in networks will respond to combinations of signals from 
other elements. By applying Boolean logic to a network, one can pre­

dict the system's behavior. 
In this simple network (a), there are three elements, each of which re­

ceives signals from the others . Element A obeys the Boolean AND function: 
it becomes active only if both elements Band Cwere previously active. Ele­
ments Band C obey OR functions: each one becomes active if either of the 
other elements was active. By listing every possible initial combination of 
states in the network, one can deduce from the Boolean functions what all 
the successor states will be (b). 

The long-term behavior of the system is remarkably simple. Although the 
network can initially have any of eight different states, it will eventually set­
tle into one of only three state cycles-each one a recurrent pattern of 
change (c). If all the elements are off initially, the network never changes. If 
only element B or element C is active, the system will cycle back and forth 
between the two states. Any other network state inevitably leads to all the 
elements' becoming active and staying that way. 
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ly settle into one of its state cycle at­
tractors and remain there. Yet if the 
network is perturbed in some way, its 
trajectory may change. Two types of 
perturbation are worth discussing here: 
minimal perturbations and structural 
perturbations. 

A minimal perturbation is a transient 
flipping of a binary element to its op­
posite state of activity. If such a change 
does not move a network outside its 
original basin of attraction, the net­
work will eventually return to its origi­
nal state cycle. But if the change push­
es the network into a different basin 
of attraction, the trajectory of the net­
work will change: it will flow into a new 
state cycle and a new recurrent pattern 
of network behavior. 

T he stability of attractors subject­
ed to minimal perturbations can 
differ. Some can recover from 

any single perturbation, others from 
only a few, whereas still others are 
destabilized by any perturbation. Flip­
ping the activity of just one element 
may unleash an avalanche of changes 
in the patterns that would otherwise 
have occurred. The changes are "dam­
age," and they may propagate to vary­
ing extents throughout a network [see 
"Self-Organized Criticality," by Per Bak 
and Kan Chen; SCIENTIFIC AMERICAN, 

January]. 
A structural perturbation is a perma­

nent mutation in the connections or in 
the Boolean functions of a network. 
Such perturbations would include ex­
changing the inputs of two elements or 
Switching an element's OR function to 
an AND function. Like minimal pertur­
bations, structural perturbations can 
cause damage, and networks may vary 
in their stability against them. 

As the parameters describing a com­
plex Boolean system change, the sys­
tem's behavior alters, too: a system can 
change from chaotic behavior to or­
dered behavior. A type of system that 
is perhaps surprisingly easy to under­
stand is one in which the number of in­
puts to each element equals the total 
number of elements-in other words, 
everything is connected to everything 
else. (Such systems are called K = N 
networks.) Because a random K = N 
network is maximally disordered, the 
successor to each state is a completely 
random choice. The network behaves 
chaotically. 

One sign of the disorder in K = N sys­
tems is that as the number of elements 
increases, the length of the state cycles 
grows exponentially. For example, a 
K = N network consisting of 200 ele­
ments can have 2200 (about 1060) differ­
ent states. The average length of a state 
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cycle in the network is roughly the 
square root of that number, about 1030 

states. Even if each state transition took 
only one microsecond, it would take 
billions of times longer than the age of 
the universe for the network to tra­
verse its attractor completely. 

K = N networks also exhibit maxi­
mlffil sensitivity to initial conditions. 
Because the successor to any state is 
essentially random, almost any pertur­
bation that flips one element would 
sharply change the network's subse­
quent trajectory. Thus, minimal chang­
es typically cause extensive damage­
alterations in the activity patterns-al­
most immediately. Because the systems 
show extreme sensitivity to their initial 
conditions and because their state cy­
cles increase in length exponentially, I 
characterize them as chaotic. 

Despite these chaotic behaviors, how­
ever, K= Nsystems do show one start­
ling sign of order: the number of pos­
sible state cycles (and basins of at­
traction) is very small. The expected 
number of state cycles equals the num­
ber of elements divided by the logarith­
mic constant e. A system with 200 ele­
ments and 2200 states, for example, 
would have only about 74 different 
patterns of behavior. 

Moreover, about two thirds of all the 
possible states fall within the basins of 
only a few attractors-sometimes of 
just one. Most attractors claim relative­
ly few states. The stability of an attrac­
tor is proportional to its basin size, 
which is the number of states on tra­
jectories that drain into the attract or. 
Big attractors are stable to many per­
turbations, and small ones are general­
ly unstable. 

Those chaotic behavioral and struc­
tural features are not unique to K = N 
networks. They persist as K (the num­
ber of inputs per element) decreases to 
about three. When K drops to two, how­
ever, the properties of random Boolean 
networks change abruptly: the networks 
exhibit unexpected, spontaneous collec­
tive order. 

In K = 2 networks, both the number 
and expected lengths of alternative state 
cycles fall to only about the square root 
of the number of elements. The state 
cycles of K = 2 systems remain stable 
in the face of almost all minimal per­
turbations, and structural perturba­
tions alter their dynamic behavior only 
slightly. (Networks with only a single 
input per element constitute a special 
ordered class. Their structure degener­
ates into isolated feedback loops that 
do not interact.) 

It has been more than 20 years since 
I discovered those features of random 
networks, and they still surprise me. If 

4 

"FROZEN" ELEMENTS incapable of changing state can sometimes arise in a system. 
In this small sample network, all the elements are ruled by Boolean OR functions, 
and all are initially off. Changes cascade through the system after one element is 
turned on (black). Because of the configuration of the network and the Boolean 
functions involved, some elements (blue) freeze into the on state. Thereafter they 
will return to that state even if they or one of their inputs is altered. 

one were to examine a network of 100,-
000 elements, each receiving two inputs, 
its wiring diagram would be a wildly 
complex scramble. The system could as­
sume as many as 2100.000 (about 1030.000) 

different states. Yet order would emerge 
spontaneously: the system would set­
tle into one of but 370 or so different 
state cycles. At a microsecond per tran­
sition, that K = 2 network would tra­
verse its tiny state-cycle attractor in 
only 370 microseconds-quite a bit 
less than the billions of times the age 
of the universe that the chaotic K = N 
network requires. 

I n the ordered regime of networks 
with two or fewer inputs per ele­
ment, there is little sensitivity to 

initial conditions: the butterfly sleeps. 
In the chaotic regime, networks diverge 
after beginning in very similar states, 
but in the ordered regime, similar states 
tend to converge on the same succes­
sor states fairly soon. 

Consequently, in random networks 
with only two inputs per element, each 
attractor is stable to most minimal per­
turbations. Similarly, most mutations 
in such networks alter the attractors 
only slightly. The ordered network reg­
ime is therefore characterized by a 
homeostatic quality: networks typically 
return to their original attractors after 
perturbations. And homeostasis, as I 
shall discuss presently, is a property of 
all living things. 

Why do random networks with two 
inputs per element exhibit such pro­
found order? The basic answer seems 
to be that they develop a frozen core, 
or a connected mesh of elements that 
are effectively locked into either an ac-

tive or inactive state. The frozen core 
creates interlinked walls of constancy 
that "percolate" or grow across the en­
tire system. As a result, the system is 
partitioned into an unchanging frozen 
core and islands of changing elements. 
These islands are functionally isolated: 
changes in the activities of one island 
cannot propagate through the frozen 
core to other islands. The system as a 
whole becomes orderly because chang­
es in its behavior must remain small 
and local. Low connectivity is there­
fore a sufficient condition for orderly 
behavior to arise in disordered switch­
ing systems. 

It is not a necessary condition, how­
ever. In networks of high connectivity, 
order will also arise if certain biases 
exist in the Boolean Switching rules. 
Some Boolean functions turn elements 
on more often than off or vice versa. An 
OR function for two inputs, for exam­
ple, will turn an element on in response 
to three out of the four possible combi­
nations of binary signals. 

A number of solid state physicists, 
including Deitrich Stauffer of the Uni­
versity of Kbln and Bernard Derrida 
and Gerard Weisbuch of the Ecole Nor­
male Superieure in Paris, have studied 
the effects of biased functions. They 
have found that if the degree of bias 
exceeds a critical value, then "homo­
geneity clusters" of elements that have 
frozen values link with one another 
and percolate across the network. The 
dynamic behavior of the network be­
comes a web of frozen elements and 
functionally isolated islands of change­
able elements. 

That order, of course, is much the 
same as I have described for networks 

SCIENTIFIC AMERICAN August 1991 8 1  
© 1991 SCIENTIFIC AMERICAN, INC



INITIAL STATE OF NETWORK 

K=2��AC' /' 
HIGH? 

PHASE CHANGES between "solid" and "gaseous" states can occur in self-regulating 
networks, depending on their local characteristics. lf the elements' Boolean func­
tions are biased or if each element has only two inputs (K = 2), then a network in 
which all the elements can initially vary will eventually become stable and hence 
solid. Such ordered systems consist of a large web of frozen elements (blue) and 
isolated islands of variable elements (red). lf the functions are unbiased or the in­
terconnectedness of elements is high (K> 3), the system becomes a gas and be­
haves chaotically. Only small islands of elements will be frozen. 

with low connectivity. Transient rever­
sals in the activity of a single element 
typically cannot propagate beyond the 
confines of an isolated island and there­
fore cannot cause much damage. In 
contrast, if the level of bias is well be­
low the critical value-as it is in chaoti­
cally active systems-then a web of os­
cillating elements spreads across the 
system, leaving only small islands of 
frozen elements. Minimal perturbations 
in those systems cause avalanches of 
damage that can alter the behavior of 
most of the unfrozen elements. 

C hristopher Langton, a computer 
scientist at Los Alamos National 
Laboratory, has introduced an 

analogy that helps one think about the 
change between order and disorder in 
different ensembles of networks. He 
has related network behavior to the 
phases of matter: ordered networks 
are solid, chaotic networks are gaseous 
and networks in an intermediate state 
are liquid. (The analogy should not be 
interpreted too literally, of course: true 
liquids are a distinct phase of matter 
and not just a transitional regime be­
tween gases and solids.) 

If the biases in an ordered network 
are lowered to a point near the critical 
value, it is possible to "melt" slightly 
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the frozen components. Interesting dy­
namic behaviors emerge at the edge 
of chaos. At that phase transition, both 
small and large unfrozen islands would 
exist. Minimal perturbations cause nu­
merous small avalanches and a few 
large avalanches. Thus, sites within a 
network can communicate with one an­
other-that is, affect one another's be­
havior-according to a power law distri­
bution: nearby sites communicate fre­
quently via many small avalanches of 
damage; distant sites communicate less 
often through rare large avalanches. 

These characteristics inspired Lang­
ton to suggest that parallel-processing 
networks poised at the edge of cha­
os might be capable of extremely com­
plex computations. On the face of it, 
the idea is plausible. Highly chaotic 
networks would be so disordered that 
control of complex behaviors would be 
hard to maintain. Highly ordered net­
works are too frozen to coordinate 
complex behavior. But as frozen com­
ponents melt, more complicated dy­
namics involving the complex coordi­
nation of activities throughout a net­
work become feasible. The complexity 
that a network can coordinate peaks at 
the liquid transition between solid and 
gaseous states. 

Systems poised in the liquid transi-

tion state may also have special rele­
vance to evolution because they seem 
to have the optimal capacity for evolv­
ing. As Darwin taught, mutations and 
natural selection can improve a biolOgi­
cal system through the accumulation 
of successive minor variants, just as 
tinkering can improve technology. Yet 
not all systems have the capacity to 
adapt and improve in that way. A com­
plex program on a standard computer, 
for example, cannot readily evolve by 
random mutations: almost any change 
in its code would catastrophically al­
ter the computation. The more com­
pressed the code, the less capacity it 
has to evolve. 

Networks on the boundary between 
order and chaos may have the flexibili­
ty to adapt rapidly and successfully 
through the accumulation of useful var­
iations. In such poised systems, most 
mutations have small consequences be­
cause of the systems' homeostatic na­
ture. A few mutations, however, cause 
larger cascades of change. Poised sys­
tems will therefore typically adapt to a 
changing environment gradually, but if 
necessary, they can occasionally change 
rapidly. These properties are observed 
in organisms. 

If parallel-processing Boolean net­
works poised between order and chaos 
can adapt most readily, then they may 
be the inevitable target of natural selec­
tion. The ability to take advantage of 
natural selection would be one of the 
first traits selected. 

T he hypothesis is bold, perhaps 
even beautiful, but is it true? 
Physicist Norman H. Packard of 

the University of Illinois at Champaign­
Urbana may have been the first person 
to ask whether selection could drive 
parallel-processing Boolean networks to 
the edge of chaos. Sometimes at least 
the answer is yes. Packard found such 
evolution occurring in a population of 
simple Boolean networks called cellular 
automata, which had been selected for 
their ability to perform a specific sim­
ple computation. 

Recently my colleague Sonke John­
sen of the University of Pennsylvania 
and I have found further evidence of 
evolution proceeding to the edge of 
chaos. We have begun studying the 
question by making Boolean networks 
play a variety of games with one anoth­
er [see box on opposite page]. Our re­
sults, too, suggest that the transition 
between chaos and order may be an at­
tractor for the evolutionary dynamics 
of networks performing a range of sim­
ple and complex tasks. All the network 
populations improved at playing the 
games faster than chance alone could 

© 1991 SCIENTIFIC AMERICAN, INC



accomplish. The organization of the 
successful networks also evolved: their 
behaviors converged toward the boun­
dary between order and chaos. 

If these results hold up under further 
scrutiny, then the liquid transition be­
tween ordered and chaotic organiza­
tions may be the characteristic target 
of selection for systems able to coordi­
nate complex tasks and adapt. By that 
reasoning, such poised systems should 
occur in biology. 

How much order and chaos do the 
genomic systems of viruses, bacteria, 
plants and animals exhibit? Usually 
each gene is directly regulated by few 
other genes or molecules-perhaps 
no more than 10. The Boolean wiring 
diagram for the genome is therefore 
sparse, and the individual gene ele­
ments have few inputs. Furthermore, 
almost all known regulated genes are 
governed by a particular class of Bool­
ean Switching rules called canalizing 
functions. In canalizing TI1nctions, at 
least one input has a value that can by 
itself determine the activity of the reg­
ulated element. (The OR TI1nction is a 
typical canalizing TI1nction.) 

like low connectivity or biases in the 
Boolean rules, an abundance of cana­
lizing functions in a network can cre­
ate an extensive frozen core. Increasing 
the proportion of canalizing functions 

used in a network can therefore drive 
the system toward a phase transition 
between chaos and order. Because ge­
nomic regulatory systems are sparse­
ly connected and typically appear to 
be governed by canalizing functions, 
such networks are very likely to exhibit 
the traits of parallel-processing sys­
tems with frozen percolating elements: 
a modest number of small, stable at­
tractors, the confinement of damage to 
small cascading avalanches and mod­
est alterations in dynamics in response 
to mutations. 

O ne interpretation of the mean­
ing of antichaos in complex sys­
tems has particular relevance 

to biology: a cell type may correspond 
to an attractor in the genomic dynam­
ics. A genome that contains 100,000 

genes has the potential for at least 
1030,000 patterns of gene expression. 

The genomic regulatory network orches­
trates those possibilities into changing 
patterns of gene activity over time. But 
a stable cell type persists in express­
ing restricted sets of genes. The natu­
ral suggestion is that a cell type corre­
sponds to a state-cycle attractor: it em­
bodies a fairly stable cycle of expres­
sion in a specific set of genes. 

Given that interpretation, the sponta­
neous order arising in networks with 

The Mismatch Game 

Aomputer game demonstrates how natural selection can push random 
networks to a point near the edge of chaos. Pairs of networks receive 

high scores for having patterns in six of their elements, designated 
as "matchsites," that differ maximally from one another. After a comparison, 
each network takes the pattern in the matchsites of the other as an input, 
works on its response and makes another comparison [see below]. After 10 
comparisons, each network finds a new opponent. The networks with the 
highest scores reproduce preferentially to form the next generation. Oc· 
casional mutations randomly alter the local characteristics of the networks. 
Over several generations, the networks generally improve at playing the 
game. Regardless of their initial conditions, the networks approach the 
boundary between order and chaos. 

These changes can be observed by measuring how a network's trajec­
tories diverge or converge at various times. 0T is the percentage of the 
elements that have different activities in two initial states of one network. 
0T + 1 is that percentage measured for the successor states. When 0T is 
small in very chaotic (Kj = 5) networks, trajectories diverge (OT 1 > 0T)' In 
very ordered (Kj = 1) networks, trajectories converge (OT + 1 < OTt. After sev· 
eral generations of playing the Mismatch Game, chaotic and ordered net· 
works moderate their behavior [see graphs at right]. 

FIRST ROUND SECOND ROUND THIRD ROUND 

o 0 . . .  THINK . . .  0 . . .  THINK ... 

NETWORK A NETWORK B 
SCORE = 0/6 

NETWORK A NETWORK B 
SCORE = 4/6 

NETWORK A NETWORK B 
SCORE = 6/6 

. low connectivity and canalizing Bool­
ean TI1nctions sets up several predic­
tions about real biological systems. 
First, each cell type should correspond 
to a very small number of gene expres­
sion patterns through which it cycles. 
One can therefore calculate how long 
such cell cycles should be. 

After receiving an appropriate stim­
ulus, a gene in a eukaryotic cell needs 
about one to 10 minutes to become 
active. The length of an attractor in a 
genome with 100,000 genes would be 
about 370 states. Consequently, a cell 
should run through all the gene expres­
sion patterns of its type in roughly 370 
to 3,700 minutes. This figure approxi­
mates the correct range for real biolog­
ical systems. As predicted, the length 
of cell cycles does seem to be propor­
tional to roughly the square root of the 
amount of DNA in the cells of bacteria 
and higher organisms. 

If a cell type is an attractor, it should 
be possible to predict how many cell 
types could appear in an organism. 
The number of attractors is about the 
square root of the number of elements 
in a network; therefore, the number 
of cell types should be approximate­
ly the square root of the number of 
genes. If we assume that the number 
of genes is proportional to the amount 
of DNA in a cell, then humans should 

FIRST GENERATION 
100 r-----------------------� 

100 

LATER GENERATION 
100 r-----------------------� 

K;=5 

K;=1 

100 
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GRAM OF DNA PER CELL 
NUMBER OF CELL TYPES in organisms seems to be related mathematically to the 
number of genes in the organism. In this diagram the number of genes is assumed 
to be proportional to the amount of DNA in a cell. If the gene regulatory systems 
are K = 2 networks, then the number of attractors in a system is the square root of 
the number of genes. The actual number of cell types in various organisms ap­
pears to rise accordingly as the amount of DNA increases. 

have about 100,000 genes and 370 

cell types. By the most recent count, 
humans have about 254 distinct cell 
types, so that prediction is also in the 
right range. 

Across many phyla, the number of 
cell types seems to increase with ap­
proximately the square root of the num­
ber of genes per cell (that is, with the 
number of genes raised to a fractional 
power that is roughly one half ). Thus, 
bacteria have one or two cell types, 
sponges have perhaps from 12 to 15 

and annelid worms have about 60. 

Because not all DNA may have a func­
tion, the number of genes may not rise 
directly with the amount of DNA . The 
predicted number of cell types could 
therefore increase according to a frac­
tional power greater than one half (the 
square root) but less than one. In fact, 
by conservative estimates, the number 
of cell types appears to increase at 
most as a linear function. Such a range 
of behavior is found in complex Boole­
an networks. In contrast, other Simple 
mathematical models for genomic sys­
tems predict that the number of cell 
types would increase exponentially with 
the number of genes. 
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Another prediction refers to the sta­
bility of cell types. If a cell type is an 
attractor, then it cannot be altered by 
most perturbations: its stability is an 
emergent property of the gene regula­
tory system. 

Differentiation, according to this mod­
el, would be a response to perturba­
tions that carried a cell into the basin 
of attraction for another cell type. In 
a canalizing ensemble, however, each 
model cell can differentiate directly into 
only a few alternative cell types because 
each attractor is "near" only a few oth­
ers. Consequently, ontological develop­
ment from a fertilized egg should pro­
ceed by successive branching pathways 
of differentiation. In other words, once 
a cell has begun to differentiate along 
certain lines, it loses the choice of dif­
ferentiating in other ways. As far as bi­
ologists know, cell differentiation in 
multicellular organisms has been fun­
damentally constrained and organized 
by successive branching pathways since 
the Cambrian period almost 600 mil­
lion years ago. 

In canalizing networks, order emerg­
es because a large fraction of the bina­
ry elements falls into a stable, frozen 

state. That stable core of elements is 
identical in almost all the attractors. 
Hence, all the cell types in an organism 
should express most of the same genes. 
Typically only a few percent of the 
genes should show different activities. 
Both claims hold true for biological 
systems. 

The attractor model for cell types 
also predicts that the mutation of a sin­
gle gene should usually have fairly lim­
ited effects. Avalanches of damage (or 
changed activity) caused by the muta­
tion should not propagate to the vast 
majority of genes in the regulatory net­
work. Changes in activity should be re­
stricted to small, isolated islands of 
genes. These expectations are met by 
real genetic systems. 

Moreover, the expected sizes of the 
unfrozen islands in the gene systems 
come close to predicting the sizes of 
such avalanches. For example, a hor­
mone called ecdysone in the fruit fly 
Drosophila can unleash a cascade that 
changes the activity of about 150 genes 
out of at least 5,000. The expected size 
of avalanches in canalizing genomes 
with 5,000 elements or in those with 
low connectivity and a frozen core con­
taining roughly 80 percent of the genes 
is about 160. 

T aken as models of genomic sys­
tems, systems poised between 
order and chaos come close to 

fitting many features of cellular dif­
ferentiation during ontogeny-features 
common to organisms that have been 
diverging evolutionarily for more than 
600 million years. The parallels sup­
port the hypothesis that evolution has 
tuned adaptive gene regulatory systems 
to the ordered region and perhaps to 
near the boundary between order and 
chaos. If the hypotheses continue to 
hold up, biologists may have the begin­
nings of a comprehensive theory of ge­
nomic organization, behavior and ca­
pacity to evolve. 
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