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Collective ordering of spatially distributed 

oscillators is ubiquitous in nature … 

• Pacemaker cells in the heart 

• -cells in the pancreas 

• Long-range synch across brain during 

perception 

• Contractions in the pregnant uterus 

• Rhythmic applause 

• Pedestrians on a bridge falling in step 

with the swinging motion of bridge 

 

Male Fireflies flashing in unison 

Each insect has its own rhythm – but the phase alters 

based on seeing its neighbors lights, bringing harmony 



… and vital for the proper functioning of 

many biological systems 

Yamaguchi et al., Science, 302,1408 (2003) 

Incoherent 

Coherent 

Cellular clocks (day-night cycle) 

Examples: 
Synchrony in the Brain during perceptual 

“binding” 

40 Hz oscillations  



Quorum Sensing  
Synchrony triggered by cell density via exchange of 

signaling molecules through a homogeneous 

extracellular medium 

http://mpkb.org/ 



Peskin (1975) : Model for sino-atrial node 

Collection of N identical integrate-and-fire oscillators 

Results for the simple case of all-to-all coupling 

• For arbitrary initial conditions, the system approaches a state in 

which all oscillators are synchronously active. 

• Proved for N=2, later for arbitrary N 

• Also true when oscillators are not quite identical (No proof!). 

• Hopfield (1994): local coupling  slider-block model of 

earthquakes   Self-organized criticality (SOC) 

Winfree (1967) : Populations of biological oscillators 

Mean-field model of weakly coupled limit-cycle oscillators 

Kuramoto (1975) : Exactly solvable model of collective 

synchronization 

Transition to synchrony with increased coupling 



Christiaan Huygens 

Synchronization of Coupled Oscillators 

Feb 1665: Huygens observed phase-

locking between two pendulum clocks 

hung side by side 

In-phase 

Anti-phase 



q 

Changing variables 

Limit cycle in phase space 

Consider many „phase oscillators‟ : 

The coupled system: 

Assumption:  Rapid convergence to limit cycle attractor 

( i=1,2,…,N >>1 ) 

Coupled Phase Oscillators 

d/dt =  

di / dt = i 

di / dt = i  + N
j=1 kij ( j – i )  

kii (  ) = 0,  kij (  ) = kij (   2) 



• N (>>1) oscillators described only by their phase  

g() 

 

• Oscillator frequencies randomly chosen from a 

distribution g() with a single local maximum. 

(Assume mean frequency = 0) 
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• Assumes sinusoidal all-to-all coupling. 

 

• Macroscopic coherence in the system is 

characterized by the order parameter: 
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n = 1, 2, …., N      k = (coupling constant) 

Kuramoto model (1975):   kij (  ) = k sin  

Global 

coupling 
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Measuring coherence of 

oscillations in the system 



With increasing strength of coupling (k), a transition 

to coherence (r >0) at a critical value of k  
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Incoherence 

Synchronization 

g(0) 

g() 

 

Synchronization-desynchronization transition 

in Kuramoto model 

kc = 2 / g(0) N  



Spontaneously beating aggregates of 7-day chick embryo ventricular cells 
Oscillations of all cells in an aggregate are synchronized by gap junction coupling 

Transmembrane 

potential time series 

from an aggregate 

20-msec, 9-nA depolarizing pulse 

Shrier Lab 

Rhythmic activity in the heart is driven by pacemaker cells 

SA node 



The synchrony is mediated by centralized 

coordination 

pace- 

maker 



For many biological processes 

No centralized coordination 
agency have been  

identified as yet 

 

pace- 

maker 



Ordering without centralized coordination 

Wikipedia 

Wikipedia 

Local interactions can lead 

to order without an 

organizing center in 

complex systems 

 

Examples:  

flocking and swarming 



Co-ordination among organisms 

For example, 

How can cooperation emerge at the level of 

collective behavior through interactions 

between individuals looking to maximize their 

individual benefit ?  



Prisoners Dilemma 

Cooperate Defect 

Cooperate R,R S,T 

Defect T,S P,P 

T: Temptation to defect 

R: Reward for cooperation 

P: Punishment for mutual defection 

S: Sucker‟s payoff 

In general, T > R > P > S 

Usually, R=1, P=0, S=0 and 1<T<2  

originally framed by Merrill Flood and Melvin 

Dresher at RAND (1950)  

Payoff Matrix 

In the iterative setting, an ideal 

model for analyzing the conditions 

for the emergence of cooperation 



Spatial Prisoners Dilemma 
Nowak & May, Nature 1992 

Agents play with neighbors 

on a lattice, adopting 

strategy of neighbor with 

highest payoff 

1.75< T <1.8 1.8< T <2 

t = 30 t = 217 t = 219 t = 221 

Waves of cooperation 

and defection are 

observed to propagate 

along the lattice 


