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Elements of biological circuits

Figures and text from

Tyson, Chen & Novak, “Sniffers, buzzers, toggles
and blinkers,” Curr. Opin. Cell Biol. 15:221

(2003).

A molecular network looks strikingly similar to the wiring diagram of a
modern electronic gadget. Instead of resistors, capacitors and transistors
hooked together by wires, one sees genes, proteins and metabolites hooked
together by chemical reactions and intermolecular interactions.

* Complex molecular networks, like electrical circuits, seem to be constructed
from simpler modules: sets of interacting genes and proteins that carry out
specific tasks and can be hooked together by standard linkages.

* Simple signalling pathways can be embedded in networks using positive and
negative feedback to generate more complex behaviours — toggle switches

and oscillators — which are the basic building blocks of the exotic, dynamic

behaviour shown by nonlinear control systems.



Simple modules for building complex
dynamic networks

* Linear and hyperbolic signal response : graded & reversible
* Sigmoidal response: reversible but abrupt (“buzzer”)
* Perfectly adapted response: transient response (“sniffer”)
* Positive feedback : discontinuous switch

— hysteresis

— mutual activation (“one way” switch)

— mutual inhibition (“toggle” switch)
* Negative feedback

— homeostasis

— oscillations (“blinker”)



Protein synthesis and degradation

S = signal concentration (e.g., concentration of mMRNA)
R = response magnitude (e.g., concentration of protein)
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Protein Phosphorylation/Dephosphorylation

R = unphosphorylated protein
Rp; = phosphorylated protein
R; = R + Ry = total protein concentration
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Protein Phosphorylation/Dephosphorylation

Michelis-Menten kinetics

Switch-like response or zero-order ultrasensitivity (“buzzer”)
Goldbeter & Koshland, PNAS 78, 6840 (1981)
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Perfectly adapted signal response (“sniffer”)

by supplementing the simple linear response element with a second

signaling pathway (via species X
8 &P 4 ( P ) Levchenko & Iglesias, Biophys | 82, 50 (2002)
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Feedback

some component of a response pathway may feed back on the
signal.

Feedback can be
* positive,

* negative or

* mixed



Positive Feedbaclk: Mutual activation

* R activates protein E by phosphorylation
* EP enhances the synthesis of R
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Discontinuous switch: cellular response changes abruptly and
irreversibly as signal magnitude crosses a critical value.

dR

= koEp(R) + k1S — kX - R

dt

Ep(R) = G(kaR, k4,J3,Js)

Irreversible switch (“fuse”): once response
goes to high, it remains there even when signal

becomes low



One-way switch (“fuse™)

One-way switches presumably play major roles in developmental processes

characterized by a “point of no return”

Laurent & Kellershohn,Trends Biochem Sci 24,418 (1999)

Example: Apoptosis (Programmed Cell Death)

@ Cells dama

http://science.howstuffworks.com/
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Positive Feedbaclk: Mutual inhibition

* Rinhibits E

* E promotes the degradation of R
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Toggle switch: if the signal is increased beyond a
critical value the system will switch to a high
state and if signal decreases enough, the switch
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region will display hysteresis (state depends on
how signal is changed — increased or decreased)
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Negative Feedback Oscillator

Goodwin, Nature 209, 479 (1966)

RP activates the degradation of X
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Negative feedback has been proposed as a
basis for oscillations in protein synthesis

Repressilator (Elowitz & Leibler): artificial
oscillating genetic network consisting of 3
operons that repress one another in a loop.



Substrate Depletion Oscillator

Oscillations via positive & negative feedback

+ve feedback creates a bistable system and —ve feedback drives
the system back and forth between the two stable steady states

Subcritical Hopf
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Activator-Inhibitor Oscillator

R i di vt hen i " Goldbeter, Biochemical
is created in an autocatalytic process, then it promotes the oscillations and cellular

production of an inhibitor, X, which speeds up R removal. thythms (1997)
First, R builds up, then comes X to force R back down, then X
disappears and R can rise again.
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aRrR koEp(R) + k1S — koR — KL X - R Example: cyclicAMP production in slime mold
— =k, — — ko X -
dt External cAMP binds to a surface receptor, stimulates
ﬁ — keR — ko X adenylate cyclase to produce and excrete more cAMP. At the
at 2 6 same time, cAMP-binding pushes the receptor into an inactive

form.After cAMP falls off, the inactive form slowly recovers its
Ep(R) = G(ksR. Kka,J3,Js) ability to bind cAMP and stimulate adenylate cyclase again.



cyclicAMP oscillations in slime mold
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Cell- cycle regulation in eukaryotes
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