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Alaskan food web

Network of
Ecological Interactions

Simple food chains ...are embedded in more... Complex food webs
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Early understanding of food webs

“Not a single plant, not even a lichen, grows on this

island; yet it is inhabited by several insects and spiders”
Charles Darwin, 1839

“In February, 1832, Darwin described the food web of St. Paul's Rocks
near the equator in the middle of the Atlantic Ocean, and remarked with
surprise on the apparent absence of plants.”

J E Cohen (1994) in Frontiers of Mathematical Biology (ed S A Levin)

Abundance of each species maintained at a natural equilibrium:

“Moebius in1877... recognized the importance of interspecific nutritive
relationships while he was studying the organisms living on the oyster-
beds of Schleswig-Holstein. To Moebius is due also the credit for noting
that the effect of these interspecific relationships is to establish a state of
equilibrium.”

U d' Ancona (1954) The Struggle for Existence



First known network of trophic relations

Lorenzo Camerano (1880)

Tovods X

Network nodes
classified into several
taxa

Plants
Parasitic plants
Insects
Worms
Spiders
Crustaceans
Fish
Amphibians
Reptiles
Birds
Mammals

First graphical representation of a food web as a network of groups of species

linked by feeding relations



Summerhayes and Elton (1923)
Food web of Bear Island

Wikipedia
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Bear Island

S (# taxa) = 28
L (# links) = 59
L/S (links/species) = 2.1

C (connectance: L/S2) = 0.075
TL (mean trophic level) = 2.07

1 bacteria, 4 autotrophs, 13 invertebrates, 6 birds, 4 mammals

Directed Connectance (C): Proportion of possible links (5%) that are realized (L)

Source: Neo Martinez



Food web of Little Rock Lake,Wisconsin

‘ Fishes

Insects

Zoo-
plankton

Algae

$=92,L=997,L/5=11,C=012, TL= 2.40

Martinez 1991



Antarctic Weddell Sea Food Web

Highly & Evenly Resolved

Original species = 492

62 autotrophs

4 mixotrophs

345 invertebrates

48 ectotherm vertebrates
29 endotherm vertebrates
3 detritus

1 bacteria

S5:=290
L=7200

L/S =248

C =0.086

Mean TL = 3.79

Data compiled by Ute Jacob

Source: Neo Martinez



Reconstructing Food Webs from the Cambrian Period

Dunne et al, PLoS Biology (2008)

Burgess Shale

Criginal Species Trophic Species
S=142, L=771, C=0.038 S=48,L =249, C=0.108

TL=2.42, MaxTL = 3.67 TL=272, MaxTL=3.78

Chengjiang Shale

Original Species Trophic Species
S=85, L=559, C=0.077 S=33, L=99, C=0.091
TL=12.99 MaxTL=5.15 TL=2.84, MaxTL=4.36



arine A Systems-level Question

NS Instead of considering
Estuary each food web in
¥ isolation as an unique
_ _ case, is it possible to

understand the general
features of such

networks ?

To understand why and
how such networks
occur !

Source: Neo Martinez
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Are Complex Networks Unstable ?

Do complex networks become more susceptible to perturbations as:
* the number of nodes,

* the density of connections, and,

* the strength of interaction between the nodes,

is increased !

Puzzle:
Theoretical results imply that complexity decreases stability, while
observations (e.g., in ecology) sometimes show the opposite.

But...
Most results were obtained assuming networks are random and at
equilibrium (both at level of nodes as well as the network) !



The Empiricists’ View
Diversity is essential for maintaining network stability

Charles Elton (1958)

Simple ecosystems less stable than complex ones
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Charles Elton (1900-1991 )

Field observations:

[ Violent fluctuations in population density more common
in simpler communities.

 Simple communities more likely to experience species
extinctions.

[ Invasions more frequent in cultivated land.

U Insect outbreaks rare in diverse tropical forests —
common in less diverse sub-tropical forests.

Robert MacArthur: theoretical attempt at justification
Multiple links = Insurance !



But ...

This view was challenged by:

* Numerical experiments on the stability of random networks by
Gardner & Ashby (1970).

* Theoretical analysis of randomly constructed ecological
networks by May (1972).

Observation: Stability decreases as network size,
connectivity and interaction strength increases. = |

The Theorist’s View

Increasing diversity leads to network instability &

Robert M May (1936-)

Basis for the Stability vs. Diversity debate in ecology.


http://www.topbritishinnovations.org/
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...and more resistant

=t
o

Drought resistance (dB/Bdt, yr')

Tilman et al. (1996)

but no effect on population variability.

indicates averaging effect.



Experimental evidence:
Bottle Experiments (e.g. Ecotron)

Fredators
Herbivares
Flant=s
Decornposers . . pr ot it T
High Medium Low
Biodiversity

Setup allows manipulating diversity while
maintaining food web structure.



High diversity communities are more
productive than low diversity ones.
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The Theorist’s View

Increasing diversity leads to network instability

Consider a simple community of one predator and one prey

dX

=—=X(a-bY
Sr=—-=X( )
dY
=—=Y(-d+cX
So=—-=1( )
Taylor expansion around the equilibrium yields the Jacobian
or “‘community matrix . bdlc
J =
ac/b -d

The system is stable if the largest real component of the
eigenvalues Re(A ..) <O.



NATURE VOL 238 AUGUST 18 1872

. ’ .
The Theorist’s View Will a Large Complex System

Increasing diversity leads to network  be Stable?
instability

RoperT M. May

Robert May (1972) constructed randomly generated matrices
representing interaction strengths in a network of N nodes
whose isolated nodes are stable (J, = -1)

-1.15 0 0.33
0.17 2.18
-0.14
029 O 0.

obtained its eigenvalues A...
...used the criterion that if A__ > 0, the system is unstable.

Observation: Stability decreases as network size, connectivity and
interaction strength increases.



Stability of large networks:

State of the network of N nodes: N-d vector x = (x| ,X,,..., Xy), X; : state of the i®" node.
Time evolution of x is given by a set of equations (e.g., Volterra-Lotka)
dx/dt=f (x) (i=172,...,N)

Fixed point equilibrium of the dynamics: x%=(x°,x9, ..., x %) such that f(x°) =0

Local stability of x © : Linearizing about the eqlbm: ox = x — x ©
d Ox/dt= A Ox where Jacobian A: A ; =0 f,/ 0 x|

x=x0

Long time behavior of 0x dominated by A

(the largest real part of the eigenvalues of A)

max

The equilibrium x = x %is stable if A < 0.
What is the probability that for a network, A .. <0?

Each node is independently stable = diagonal elements of A < 0 (choose A . = -I).

Let A =B -1 where B is a matrix with diagonal elements 0 and | is N xN identity matrix.

For matrix B, the question: What is the probability that A" < [?



Applying Random Matrix Theory:

Simplest approximation: no particular structure in the matrix B, i.e., B is a random
matrix.

B has connectance C, i.e,, B ; = 0 with probability | - C.

The non-zero elements are independent random variables from (0, 62) Normal
distribution.

For large N, Wigner’s theorem for random matrices apply.
Largest real part of the eigenvalues of Bis 1’._ = V(N C c2).

For eigenvalues of A: A .=\ . - |

max

For large N, probability of stability — 0 if V(N C o2) > I,
while, the system is almost surely stable if V(N C 62) < I.

Large systems exhibit sharp transition from stable to unstable behavior when N or
C or o2 exceeds a critical value.



Numerical computations in good
agreement with theory

(Gardner & Ashby,|1970; May,1973).

Probability of stability

Gardner and Ashby

NATURE VOL. 228 NOVEMBER 21
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Fig, 1. Variatlon of stability with connectance.

1400

Early empirical data
supporting May
(McNaughton, 1978)
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May-June 1977



L s REVIEW ARTICLE o

Other ‘“stabilities’’ The complexity and stability of

ecosystems

Stuart L. Pimm

Global stability : system is stable if it returns to equilibrium after any
perturbation (large or small) — size of basin of attraction

Resistance : the ability of a community to resist change in the face of a
potentially perturbing force.

) -

low resistance high resistance

Resilience : the ability of a community to recover to normal levels of
function after disturbance.

e () T

low resilience high resilience

Variability : the variation in population or community densities over time.
Usually measured as the coefficient of variation (CV = mean / variance)



In nature, networks are not random —
many have certain structural patterns

So...

How does network topological
structure affect dynamical stability ?



Small World Structure in Ecological
Networks !

Montoya and Sole (2001)

a) Sluslaring Coslliciean
0.5

Iy . Network analysis of some food webs:
E 0.3

U oz L=

£ 02 . " . .

T 0.1 I-w I,,,, I * Ythan estuary : freshwater-marine interface
e e are e * Silwood Park: field site

 Little Rock Lake: freshwater habitat
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E3 . High clustering — small-world !
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Challenged by Dunne et al (2002): Analysis of 16 food webs

“Most food webs do not display typical small-world topology”

Does small-world topology affect the stability of a network ?



Question:
Does small-world topology affect the stability of a network ?

Answer: NO!  (Sinha, 2005) o .
The stability-instability

Probability of stability in a network transition occurs at the same
Finite size scaling: N = 200, 400, 800 and 1000. CI"itiC&' value S random
v=20 v=1.72 v=15 k
p=0 5= 0.01 o=1 network ....
16= ' ' r 1= j o,
" ) i but transition gets sharper
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Regular vs Random Networks N = 1000, C = 0.021,c = 0.206



Scale-Free Degree Distribution in + A | -

Ecological Networks ? B _

10-1F 3

Montoya and Sole (2006): power-law - N

distribution ! [Kyoto plant-pollinator web] - Montoya, .

Challenged by Martinez et al 102} Ilmlml mc:le N
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0.10

cumulative distribution
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Exponential distribution,
not power law

N Martinez



So how can complex networks be robust at all ?

We have not yet considered the dynamics of networks!

Possible solution: Network Evolution

Predator Adaptation or Prey Switching at short time scales
The trophic links between species may change depending on
their relative densities

Community Assembly at long time scales
Networks do not occur fully formed but gradually evolve over

time



Example:
Assembling ecological communities

How are ecological networks gradually organized over time by
species introduction and/or extinction ?

Community Assembly Rules decide
1 which species can coexist in a system
1 the sequence in which species are
able to colonize a habitat

E. O.Wilson



Network Evolution

WSB Network Assembly Model
(Wilmers, Sinha & Brede, 2002)

* Start with one node.

* Add another node with random number of links, and randomly
chosen interaction strengths a; .
* Check stability of the resultant network :

" |f unstable, remove a node at random and analyze the stability

again.

" [f stable, add another node.



Network initially grows in size monotonically ...
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...and then settles down to a pattern of growth spurts & collapses



Communities with overall weaker
interactions support a larger mean number

of species

— weak links are stabilizing (R. May).

The randomness in network connectivity is
quenched — long-range memory!
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Surprise!

For the evolved networks : complexity — robustness
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Larger networks are
* less variable (i.e., more robust)
* more resilient

(resilience = normalized mean return
time to average network size)
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Surprise!
For the evolved networks : complexity — robustness

Frequency Distribution of Extinction Cascades:
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Larger networks have smaller chance of a large magnitude
collapse — increased resistance



) stable networks form a
Community

Impllcatlons size N set of measure zero as

N becomes large

 Introducing explicit dynamics and/or
complex structure into networks: does

not change the likelihood of a network | A

to become unstable at increased
complexity

O Introducing network evolution — %

Complex yet stable networks can

evolve ! unstable

networks

 The results imply that the traditional
approach of taking snapshot views of
networks may be inadequate to build an
understanding of their stability.

Trajectory of network

Configuration space of all
possible networks of size N



