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 Intra-cellular biochemical networks 

 Metabolic networks 
Nodes: metabolites (substrates & products of metabolism) 

Links: chemical reactions (directed) 

 Genetic regulatory networks 
Nodes: Genes & Proteins 

Links: regulatory interactions (directed) 

 Protein-Protein interaction network 
Nodes: Proteins 

Links:  physical binding and formation of protein complex 

(undirected) 

 Signaling network 
Nodes: Signaling molecules e.g., kinase, cyclicAMP, Ca 

Links: chemical reactions (directed) 



The mechanism: 
a sequence of linked biochemical 

reactions inside the cell, carried 

out by enzymes (e.g., kinases/ 

phosphatases that catalyzes 

transfer of phosphate groups 

from/to a substrate) 
 

Intra-cellular 

Signaling Network 

Emergence:  
Interactions among reactions  signal-transduction by which cell 

converts signal/stimulus to specific response 

The system: 
A network whose nodes are enzymes, and links are reactions 



“Nervous system” for the cell 
Example: Chemotaxis in E coli 

http://2011.igem.org/ Input: chemical substances (e.g., nutrient) 

Output: physical movements (bacterial motion) 

Chemotaxis: Bacteria move along 

chemical gradient, towards food and away 

from noxious substances 

http://2011.igem.org/ 

Signaling pathway components for E coli chemotaxis 
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Example: B-Cell Response signaling network 
Dheeraj Kumar, Kanury VS Rao (ICGEB) 

• Breakdown of communication  disease. 

• Hijacked by intracellular infectious agents for proliferating. 

How does the signaling network allow the cell response  

 to be sensitive to various different stimuli, and,  

 yet robust enough to withstand noise ? 





p38 

Under normal condition 

measure activation 

Let’s focus on a specific kinase 

 

How does it respond when 

activation of particular nodes 

in the network are blocked ? 

Reconstructing the complete set of interactions  



positive effect negative effect no effect 

Surprise: e.g., p38 affects and is affected by many other nodes ! 

 

Why ? 

Correlation analysis of activity 
 

Which nodes influence which other nodes ? 

Block activation of a node, and find out how other nodes behave 

in its absence 

Dheeraj Kumar, Kanury VS Rao (ICGEB) 
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Ser/Thr Kinase 

Tyr Kinase 

Dual specificity Kinase 

Other 

Inserting “missing” connections from database of protein 

interactions 

Does not always explain everything 



S 

Dynamics of Kinase Activation 

ES  P = S* 

E 

E 
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kr kp 

kinase 
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E’ 
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phosphatase 
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Activation (phosphorylation) 

De-activation 

(dephosphorylation) 

d[S]/dt = –kf [S][E] +kr [ES] = –kf [S](E0– [ES]) +kr [ES] 

 

Assume total concn. 

E0 = constant 

d[ES]/dt = kf [S](E0-[ES]) – (kr+kp) [ES] 

 d[P]/dt = kp [ES] 

 

substrate 

k’r k’p 

product 



Michaelis-Menten equation 

The steady-state assumption 

can give misleading results, 

especially in multi-step 

cascades ! 

Steady-state assumption: d[ES]/dt = 0 

 

   [ES] = E0 [S] / ( [S] + Km ) 

       with Km=(kr+kp)/kf  

 

 

   d[P]/dt = kp E0 [S] / ( [S] + Km ) 

 But is the quasi-steady-state hypothesis valid ?  Michaelis-Menten       

 equation (1912)  

Maud Menten 

(1879-1960) 

Leonor Michaelis 

(1875-1949) ac
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Studying progressively more complex kinase cascades 



The MAP-Kinase cascade 

Huang & Ferrell, 1996 

Present in all eukaryotic cells 

MAPK signaling :       

Critical for cell decisions 

on proliferation, 

differentiaton & apoptosis 

MAPK behaves like a highly cooperative 

enzyme, even though none of the 

enzymes in the cascade are assumed to 

be regulated cooperatively. 

Dual phosphorylation 

Dual phosphorylation 



[KKK]=3nM 

[KK]=1.2 M 

[K]=1.2 M 

[E2] = 0.3 nM 

[KK P’ase] = 0.3 nM 

[K P’ase] = 120 nM 

 

           …. 

The Huang-Ferrell model (1996) 

. . . 

Connects MAPK cascade 

structure to its dynamics 



Ultrasensitivity in stimulus-response of MAPK cascade 

by dual phosphorylation  

Fit to Hill equation:  

y = xnH/(K+xnH) 

(=1 for independent binding, 

>1 implies cooperative effect) 

nH: Hill coefficient 

represents degree of 

cooperativity in 

ligand binding to 

enzyme or receptor 

A V Hill 

(1886-1977) 

Huang & Ferrell, PNAS (1996) 

First phosphorylation of MAPKK driven 

by linearly increasing input stimulus 

(MAPKKK*)  rate & equilibrium level 

of phosphorylation of the substrate 

increase linearly with input.  

Second phosphorylation driven by a 

linearly increasing input stimulus 

(MAPKKK*) and a linearly increasing 

substrate concentration (MAPKK*)  

rate & equilibrium level increase as the 

square of the input stimulus. 



Experimental validation in Xenopus oocyte extract 
Huang & Ferrell, PNAS (1996) 

Various concentrations of bacterially-

expressed malE-Mos (signal E1) added to 

prepared Xenopus oocyte extracts  

 

Reactions incubated at room temperature 

for 100 min – length of time was sufficient 

to allow Mek-1 (MAPKK) and p42 

(MAPK) to reach steady-state activity 

levels 

 

Agreement with model predictions 

malE-Mos 
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Intra-cellular signaling networks: “Neural” networks 

trained by evolution 

Alberts et al, Molecular Biology of the Living Cell, 3rd ed D Bray, Nature (1995) 

simple hypothetical signaling network 

Multi-layer feed-forward neural 

network 

The elements of computation 


