Systems Biology: A Personal View IX. Intra-cellular Systems I: Regulatory Networks and Motifs

Sitabhra Sinha IMSc Chennai

Intra-cellular biochemical networks

Metabolic networks

Nodes: metabolites (substrates & products of metabolism) Links: chemical reactions (directed)

Genetic regulatory networks

Nodes: Genes & Proteins

Links: regulatory interactions (directed)

Protein-Protein interaction network

Nodes: Proteins

Links: physical binding and formation of protein complex (undirected)

□ Signaling network

Nodes: Signaling molecules e.g., kinase, cyclicAMP, Ca Links: chemical reactions (directed)

Intra-cellular biochemical networks

Metabolic networks

Nodes: metabolites (substrates & products of metabolism) Links: chemical reactions (directed)

Genetic regulatory networks

Nodes: Genes & Proteins Links: regulatory interactions (directed)

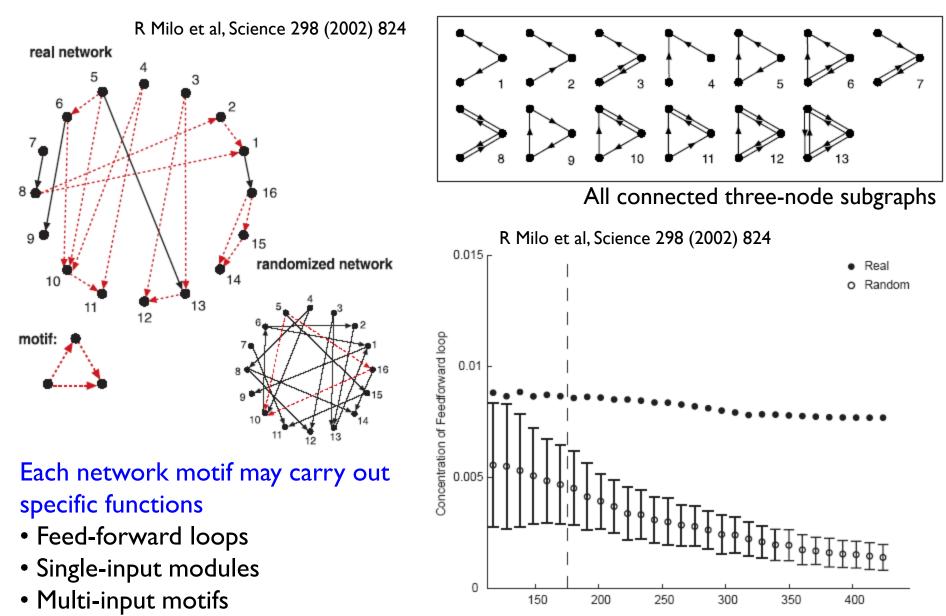
Protein-Protein interaction network

Nodes: Proteins

Links: physical binding and formation of protein complex (undirected)

□ Signaling network

Nodes: Signaling molecules e.g., kinase, cyclicAMP, Ca Links: chemical reactions (directed) Macroscopic properties such as avg path length and avg clustering tell us only about coarse-grained features of the network... to know how one part of the network behaves in relation to the others we need a more detailed view... We can focus on the properties of interactions between a few nodes of the network at a time


Microscopic properties of networks Example: Motifs

The network may be built out of putting together commonly occurring circuits

What are motifs ?

Subnetwork connection patterns that occur more frequently than expected in an equivalent random network

Motifs: recurring subnetworks of interactions

Subnetwork size

Network motifs found in Biological Networks

R Milo et al, Science 298 (2002) 824

Network	Nodes	Edges	N_{real}	$N_{\text{rand}} \pm \text{SD}$	Z score	N _{real}	$N_{\text{rand}} \pm \text{SD}$	Z score	N _{real}	$N_{rand} \pm SD$	Z score
Gene regulation (transcription)			$\begin{array}{ccc} & X & Feed-\\ & & forward \\ & Y & loop \\ & & \\$				Bi-fan				
E. coli S. cerevisiae*	424 685	519 1,052	40 70	$\begin{array}{c} 7\pm3\\ 11\pm4 \end{array}$	10 14	203 1812	$\begin{array}{c} 47\pm12\\ 300\pm40 \end{array}$	13 41			
Neurons				$\begin{array}{c} \mathbf{X} \\ \mathbf{\Psi} \\ \mathbf{Y} \\ \mathbf{\Psi} \\ \mathbf{Z} \end{array}$	Feed- forward loop	X	Y W	Bi-fan	Y _N	\mathcal{L}_{W}^{X}	Bi- parallel
C. elegans†	252	509	125	90 ± 10	3.7	127	55 ± 13	5.3	227	35 ± 10	20
Food webs				$\begin{array}{c} \mathbf{X} \\ \mathbf{\Psi} \\ \mathbf{Y} \\ \mathbf{Y} \\ \mathbf{\Psi} \end{array}$	Three chain		× ∠ ^z	Bi- parallel			
			ž		v	V					
Little Rock Ythan St. Martin	92 83 42	984 391 205	3219 1182 469	3120 ± 50 1020 ± 20 450 ± 10	2.1 7.2 NS	7295 1357 382	2220 ± 210 230 ± 50 130 ± 20	25 23 12			
Chesapeake	42 31	203 67	80	430 ± 10 82 ± 4	NS	26	130 ± 20 5 ± 2	8			
Coachella	29	243	279	235 ± 12	3.6	181	80 ± 20	5			
Skipwith B. Brook	25 25	189 104	184 181	$\begin{array}{c} 150\pm7\\ 130\pm7 \end{array}$	5.5 7.4	397 267	$\begin{array}{c} 80\pm25\\ 30\pm7 \end{array}$	13 32			

For comparison, let us look at

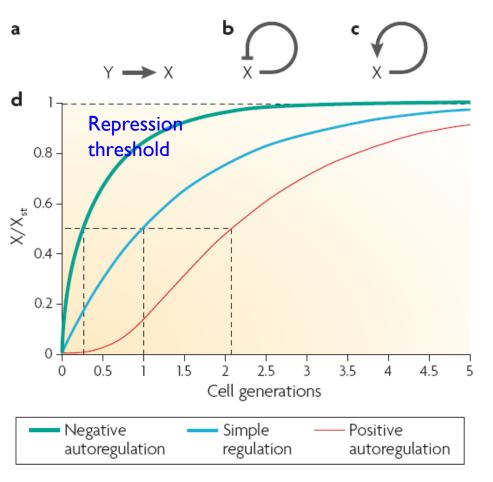
Network motifs found in Technological Networks

R Milo et al, Science 298 (2002) 824

Network	Nodes	Edges	N _{real}	$N_{\rm rand} \pm {\rm SD}$	Z score	N _{real}	$N_{\text{rand}} \pm \text{SD}$	Z score	N _{real}	$N_{\rm rand} \pm {\rm SD}$	Z score
Electronic circuits (forward logic chips)		$ \begin{bmatrix} X \\ \Psi \\ Y \\ \Psi \\ Z \end{bmatrix} $		Feed- forward loop	X Y Bi-fan Z W		$ \begin{array}{cccc} \swarrow & X & \searrow \\ Y & & Z \\ & & & \swarrow \\ & & W \end{array} $		Bi- parallel		
s15850 s38584 s38417 s9234 s13207	10,383 20,717 23,843 5,844 8,651	14,240 34,204 33,661 8,197 11,831	424 413 612 211 403	2 ± 2 10 ± 3 3 ± 2 2 ± 1 2 ± 1	285 120 400 140 225	1040 1739 2404 754 4445	1 ± 1 6 ± 2 1 ± 1 1 ± 1 1 ± 1 1 ± 1	1200 800 2550 1050 4950	480 711 531 209 264	2 ± 1 9 ± 2 2 ± 2 1 ± 1 2 ± 1	335 320 340 200 200
Electronic circuits (digital fractional multipliers)			∑ Y<	- z	Three- node feedback loop	X	Y W	Bi-fan	X^{-}	\rightarrow_{Y}	Four- node feedback loop
s208 s420 s838‡	122 252 512	189 399 819	10 20 40	1 ± 1 1 ± 1 1 ± 1	9 18 38	4 10 22	1 ± 1 1 ± 1 1 ± 1	3.8 10 20	5 11 23	1 ± 1 1 ± 1 1 ± 1	5 11 25
World Wide Web					Feedback with two mutual dyads	$ \begin{array}{c} X \\ X \\ Y \\ Y \\ X \\ Z \end{array} $		Fully connected triad	$ \begin{array}{c} \swarrow^{X} \\ \searrow \\ Y \longleftrightarrow z \end{array} $		Uplinked mutual dyad
nd.edu§	325,729	1.46e6	1.1e5	$2\text{e}3 \pm 1\text{e}2$	800	6.8e6	5e4±4e2	15,000	1.2e6	$1e4 \pm 2e2$	2 5000

Example: Transcription Regulation Networks

Each gene expresses a protein
 Some genes express proteins which control (promoting or suppressing) the rate at which other genes express proteins
 Thus genes can regulate each other (via the proteins they express)


Gene or Transcription Regulation Network: A pair of genes are connected if the expression of one gene modulates expression of another one by either activation or inhibition

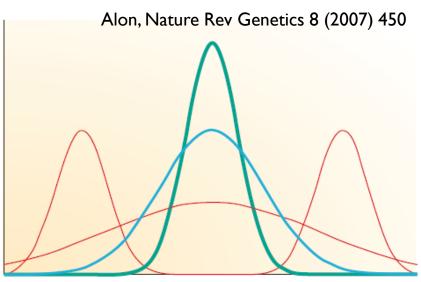
- Controls expression of genes
- Interaction between transcription factor proteins and the genes they regulate
- In response to signals, transcription rate of genes varied \to allow cells to make proteins at appropriate times and amounts

The network is built out of commonly occurring regulation circuits (motifs)

Simple regulation and Positive & Negative Autoregulation

Number of cells

Cell-cell distribution of protein levels:


Negative autoregulation \Rightarrow sharply peaked distribution

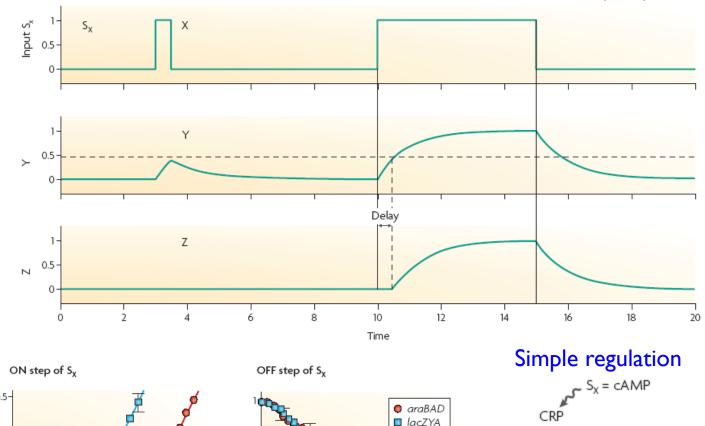
Positive autoregulation \Rightarrow broadly peaked or bimodal distributions

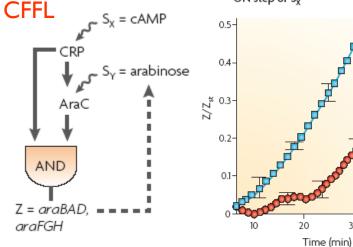
Alon, Nature Rev Genetics 8 (2007) 450

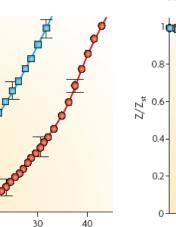

Negative autoregulation:

Transcription factor (TF) represses its own promoter Faster response time relative to simple regulation **Positive autoregulation:** TF activates its own promoter Slower response time characteristic sigmoid activity profile

Feedforward loop

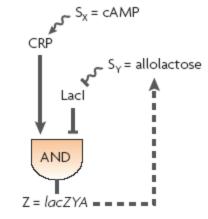

Alon, Nature Rev Genetics 8 (2007) 450




Coherent Feedforward loop: persistence detector

The CFFL shows a delay after stimulation starts but no delay after stimulation stops:

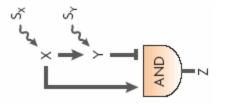
A 'sign-sensitive' delay element for filtering out brief spurious signal pulses



40

10

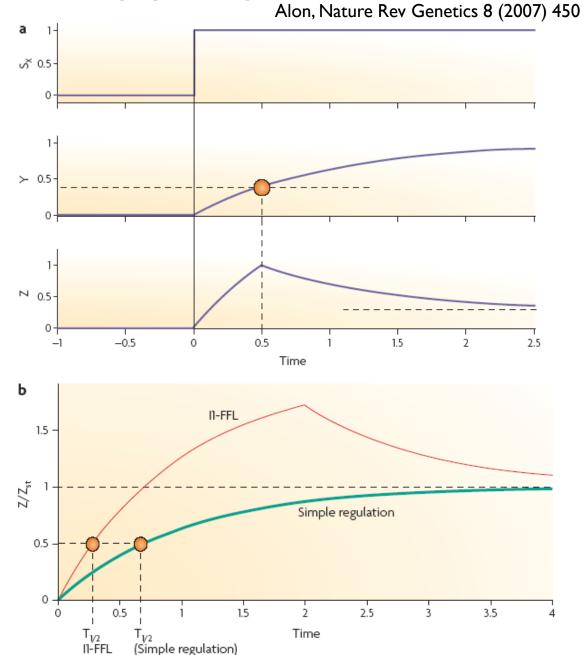
20


30

Time (min) Alon, Nature Rev Genetics 8 (2007) 450

Alon, Nature Rev Genetics 8 (2007) 450

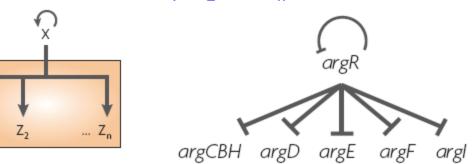
Incoherent Feedforward loop: pulse generator

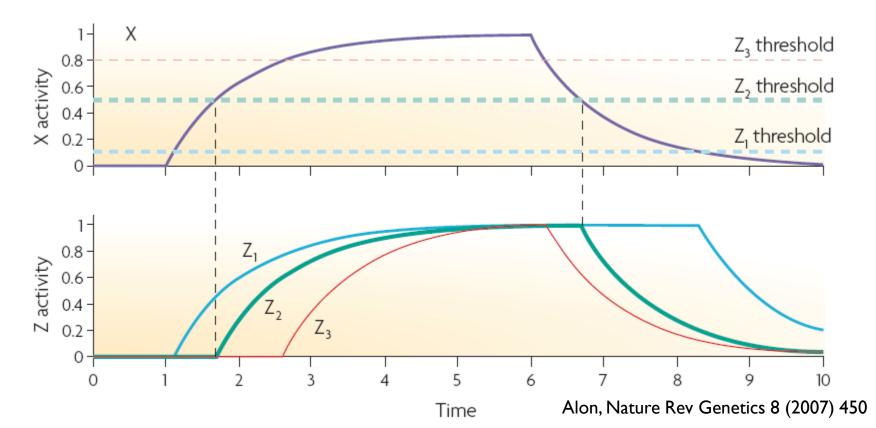


The two branches of IFFL act in opposition

X activates Z, but indirectly represses Z by activating its repressor Y

Initially, signal activating X causes rapid production of Z Later Y levels accumulate to repression threshold for Z, decreasing its production

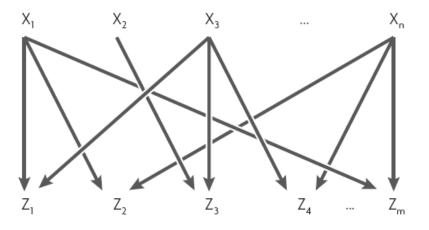

Pulse-like dynamics and response acceleration relative to simple regulation

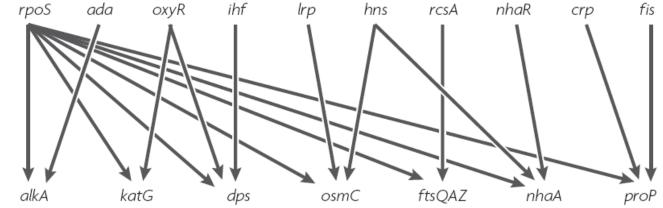


Single-input module

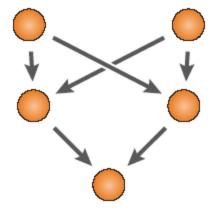
Allows coordinated expression of a group of genes with shared function

Can generate a temporal expression program with a defined sequence of activation of each target by using different thresholds A single regulator X controls a group of target genes $Z_1, Z_2, \dots Z_n$


Z


Multi-input motifs

Many inputs regulate many outputs


A set of regulators combinatorially control a set of output genes

Can be responsible for a broad function, e.g., carbon utilization, stress response, anaerobic growth (E Coli), etc. Alon, Nature Rev Genetics 8 (2007) 450

Multi-layer perceptrons

Similar to multi-layer perceptron model of neural networks – but only one layer !