Systems Biology: A Personal View
|X. Intra-cellular Systems I:
Regulatory Networks and Motifs



Intra-cellular biochemical networks

1 Metabolic networks
Nodes: metabolites (substrates & products of metabolism)
Links: chemical reactions (directed)

d Genetic regulatory networks
Nodes: Genes & Proteins
Links: regulatory interactions (directed)

1 Protein-Protein interaction network
Nodes: Proteins
Links: physical binding and formation of protein complex
(undirected)

 Signaling network
Nodes: Signaling molecules e.g., kinase, cyclicAMP, Ca
Links: chemical reactions (directed)
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Macroscopic properties such as avg path length and avg clustering tell us only
about coarse-grained features of the network... to know how one part of the
network behaves in relation to the others we need a more detailed view...
We can focus on the properties of interactions between a few nodes of the

network at a time

Microscopic properties of networks

Example: Motifs

The network may be built out of putting together commonly
occurring circuits

What are motifs !
Subnetwork connection patterns that occur more frequently than

expected in an equivalent random network



Motifs: recurring subnetworks of interactions

R Milo et al, Science 298 (2002) 824
real network > > > I\ I> & >
{ 1 2 3 4 5 6 7

: '. 2
! i ' ﬁ 8 9 10 11 12 13
i : 16

All connected three-node subgraphs

i R Milo et al, Science 298 (2002) 824

) 0.015 -
"‘ randomized network | e Real

14 o Random

0.01

Each network motif may carry out

geclcncions HHHHHHHHH

Concentration of Feedforward loop

* Single-input modules
 Multi-input motifs 15 200 250 30 3

Subnetwork size




Network motifs found in Biological Networks

R Milo et al, Science 298 (2002) 824

Network Nodes  Edges | Nieal MNeand=5D  Zscore | Meeal Mand=5D Zscore | Neeal Neand £5D  Zscore
Gene regulation X Feed- X Y Bi-fan
(transcription) W forward
Y loop
W/ Z W
Z
E. coli 424 519 40 7=3 10 203 4712 13
S. cerevisiae® 685 1.052 70 114 14 1812 30040 41
Neurons X Feed- A ' Bi-fan X Bi-
\/ forward M KN\ parallel
Y loo Y Z
v P zZ W N
7 W
C. eleganst 252 509 125 90 £ 10 37 127 55+£13 53 227 35+£10 20
Food webs X Three X Bi-
W chain 2 parallel
Y Y Z
\/ N K
Z w
Little Rock 92 084 3219 3120 =50 21 7295 2220210 25
Ythan 83 391 1182 1020 =20 72 1357 230+ 50 23
St. Martin 42 205 469 450 =10 NS 382 130 =20 12
Chesapeake 31 67 80 82+4 NS 26 32 8
Coachella 29 243 279 235+12 36 181 80=+20 5
Skipwith 23 189 184 150+7 3.5 397 8025 13
B. Brook 25 104 181 1307 74 267 307 32




For comparison, let us look at

Network motifs found in Technological Networks
R Milo et al, Science 298 (2002) 824

Network Nodes  Edges | Nieal MNeand=5D  Zscore | Meeal Nrand=5D  Zscore | Mreal MNrand £5D Z score
Electronic circuits X Feed- X Y Bi-fan Y X N Bi-
(forward logic chips) V forward v 7 parallel

Y loop A7
V Z W W
Z

515850 10.383 14240 | 424 2+2 283 1040 1=1 1200 480 2+1 335
s38584 20,717 34204 § 413 103 120 1739 62 800 711 0+2 320
538417 23843 33661 § 612 3x2 400 2404 1x1 2550 331 2+2 340
s9234 5.844 8,197 | 211 2+1 140 754 1+1 1050 209 1+1 200
513207 8.651 11.831 § 403 2=1 223 4445 1x1 49350 264 2+1 200

Electronic circuits X Three- X Y Bi-fan X—>Y Four-

(digital fractional multipliers) /[ \ node node

feedback feedback
Y<— Z loop Z W Z<—W loop

5208 122 189 10 1£1 9 4 1x1 38 5 1+1 3

5420 252 399 20 1=+ 18 10 1=1 10 11 1+1 11

5838 512 819 40 1=+ 38 22 1=x1 20 23 1x1 25
World Wide Web A Feedback X Fully X Uplinked

$__ with twao Z \ connected / \ mutual
é m?ltual V<> 7 triad V<> 7 dyad
dvads
Z
nd edu§ 325729 146e6 § 1.1ed 2eld=lel 800 6.8eb Sed=zde? 15,000 1.2e6 led = 2e2 5000




Example: Transcription Regulation Networks

[ Each gene expresses a protein
L Some genes express proteins which control (promoting or suppressing) the rate at

which other genes express proteins
U Thus genes can regulate each other (via the proteins they express)

Gene or Transcription Regulation Network: A pair of genes are connected if the expression of
one gene modulates expression of another one by either activation or inhibition

 Controls expression of genes
* Interaction between transcription factor proteins and the genes they regulate

* In response to signals, transcription rate of genes varied — allow cells to make
proteins at appropriate times and amounts

The network is built out of commonly occurring regulation circuits
(motifs)



Simple regulation and Positive & Negative Autoregulation
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Cell-cell distribution of protein levels:
Negative autoregulation = sharply peaked
distribution
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or bimodal distributions

Number of cells

Alon, Nature Rev Genetics 8 (2007) 450

Negative autoregulation:
Transcription factor (TF) represses
its own promoter

Faster response time relative to
simple regulation

Positive autoregulation:

TF activates its own promoter
Slower response time

characteristic sigmoid activity profile

Alon, Nature Rev Genetics 8 (2007) 450
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Feedforward loo
P Alon, Nature Rev Genetics 8 (2007) 450

SJ{
Coherent Coherent Coherent X o
type 2 type 3 type 4 Jr S
Ay
X X X 4
l } ] |
Y Y Y lr
VoLl L
Z Z Z -
e S
I ant FFL [r X
Incoherent Incoherent Incoherent Incoherent X
typel type 2 type 3 type 4 ‘ S
Y
X X X X v .
Y Y Y Y 1
] ] } } o
Z Z Z Z



Coherent Feedforward loop: persistence detector

The CFFL shows
a delay after

Input 5,

Alon, Nature Rev Genetics 8 (2007) 450

stimulation starts

but no delay after
stimulation stops:

A ‘sign-sensitive’
delay element for
filtering out brief

spurious signal
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Incoherent Feedforward loop: pulse generator
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Single-input module

Allows coordinated expression of a
group of genes with shared function

Can generate a temporal expression
program with a defined sequence of
activation of each target by using
different thresholds
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Multi-input motifs

Many inputs regu|ate many outputs Alon, Nature Rev Genetics 8 (2007) 450

A set of regulators %o
combinatorially control a set of

output genes

Can be responsible for a broad
function, e.g., carbon utilization,

. Y
stress response, anaerobic growth 7
. 1 2
(E Coli), etc.
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\ / Similar to multi-layer perceptron model of neural
O networks — but only one layer !



