Systems Biology: A Personal View VII. Proteins as Networks

Sitabhra Sinha IMSc Chennai

Molecular Networks

Protein Structure \equiv Network of non-covalent interactions (*links*) between amino acids (*nodes*)

Example: Kirbac I. I Potassium ion channel protein

Kuo et al, Science 2003

INTRACELLULAR

Comprises 4 identical sub-units

To construct the protein contact network from the structural data...

...obtain the x,y,z coordinates from the PDB data...

ATOM	1	CA	ALA Z	A 1	28.763	10.248	6.601	1.001	138.36
ATOM	2	CA	ALA Z	A 2	30.199	7.959	3.881	1.001	137.91
ATOM	3	CA	TYR 2	A 3	30.154	4.251	2.899	1.001	136.35
ATOM	4	CA	GLY Z	A 4	31.884	1.117	1.530	1.001	132.72
ATOM	5	CA	MET 2	A 5	29.457	-1.814	0.761	1.001	128.15
ATOM	6	CA	PRO Z	A 6	27.963	-3.905	-2.144	1.001	124.35
ATOM	7	CA	ALA Z	A 7	26.076	-2.321	-5.013	1.001	116.33
ATOM	8	CA	SER A	A 8	25.197	-2.849	-8.667	1.001	108.62
ATOM	9	CA	VAL 2	a 9	24.811	-0.380	-11.507	1.001	102.08
ATOM	10	CA	TRP 2	A 10	21.424	-1.677	-12.485	1.00	95.64
ATOM	11	CA	ARG 2	A 11	19.412	-0.786	-9.314	1.00	89.76
ATOM	12	CA	ASP 2	A 12	21.387	2.395	-8.871	1.00	84.17
ATOM	13	CA	LEU Z	A 13	19.765	3.199	-12.185	1.00	77.84
ATOM	14	CA	TYR 2	A 14	16.119	2.694	-11.149	1.00	74.00
ATOM	15	CA	TYR 2	A 15	17.090	5.111	-8.432	1.00	77.83
ATOM	16	CA	TRP 2	A 16	17.712	7.873	-10.908	1.00	81.88
ATOM	17	CA	ALA Z	A 17	14.716	6.754	-12.852	1.00	77.37
ATOM	18	CA	LEU Z	A 18	12.502	7.622	-9.913	1.00	75.09
ATOM	19	CA	LYS Z	A 19	14.470	10.565	-8.538	1.00	77.44
ATOM	20	CA	VAL 2	A 20	15.112	12.668	-11.615	1.00	74.87
ATOM	21	CA	SER A	A 21	13.044	15.559	-12.856	1.00	77.87
ATOM	22	CA	TRP 2	a 22	10.306	14.848	-15.319	1.00	79.08
ATOM	23	CA	PRO Z	A 23	12.028	16.445	-18.252	1.00	72.73
ATOM	24	CA	VAL 2	A 24	15.387	15.052	-17.476	1.00	68.77
ATOM	25	CA	PHE 2	A 25	13.321	11.945	-17.353	1.00	69.14
ATOM	26	CA	PHE 2	A 26	11.769	11.914	-20.808	1.00	71.69
ATOM	27	CA	ALA Z	A 27	15.000	13.351	-22.179	1.00	72.26
ATOM	28	CA	SER A	A 28	16.657	10.279	-20.708	1.00	74.27
ATOM	29	CA	LEU Z	A 29	14.272	8.082	-22.671	1.00	73.90
ATOM	30	CA	ALA Z	A 30	14.534	10.234	-25.774	1.00	73.72
ATOM	31	CA	ALA Z	A 31	18.340	9.977	-25.691	1.00	73.22
ATOM	32	CA	LEU Z	A 32	17.834	6.233	-25.246	1.00	71.91
ATOM	33	CA	PHE 2	A 33	15.278	6.123	-28.077	1.00	74.33
ATOM	34	CA	VAL 2	A 34	17.902	7.573	-30.345	1.00	78.38
ATOM	35	CA	VAL 2	A 35	20.664	5.290	-29.183	1.00	82.23
ATOM	36	CA	ASN A	A 36	18.229	2.387	-29.468	1.00	91.83
ATOM	37	CA	ASN Z	A 37	17.158	3.403	-32.983	1.00	98.81
ATOM	38	CA	THR 2	A 38	20.717	3.590	-34.260	1.00	99.51
								-	

... and calculate the (Euclidean) distance between each pair of amino acids...

For any pair $P = (p_x, p_y, p_z)$ and $Q = (q_x, q_y, q_z)$ the distance is calculated as: $\sqrt{(p_x - q_x)^2 + (p_y - q_y)^2 + (p_z - q_z)^2}$.

...to obtain the **Distance matrix ...**

and the Adjacency matrix

Protein Contact Network

Is the protein contact network small-world ? Yes, low average path length and high clustering

The genesis of small-world nature is from the existence of cross-links as a result of the folding of the protein

Is the small-world nature of a protein functionally important ? The cross-links provide structural stability

Protein = elastic network of balls (C- α atoms) connected by springs (chemical interactions)

Under the

Harmonic potential approxn: $V(x) \approx V(x=x_0)+(1/2)(x-x_0)^2 \partial^2 V/\partial x^2 + ...$ [Force = $\partial V/\partial x = 0$ at $x = x_0$]

PE of network, V = (k/2) $\sum_{i,j=1...N} (R_{ij} - R_{ij}^0)^2$

k: force constant

X=X

 $V = (k/2) \Sigma_{i,j=1...N} (\Delta R_i - \Delta R_j)2,$ where $R_{ij} = R_i - R_j = (R_{ij}^0 + \Delta R_i - \Delta R_j)$

Under the Harmonic potential approxn: PE of network, V = (k/2) $\sum_{i,j=1...N} (\Delta R_i - \Delta R_j)^2$, where $R_{ij} = R_i - R_j = (R_{ij}^0 + \Delta R_i - \Delta R_j)$ Or,

PE of network, $V = (k/2) (dR)^T L (dR)$

dR: column vector of fluctuations, i.e., displacements from eqlbm

L: Laplacian or Kirchoff matrix off-diagonal elements L(i,j) = -1, if d(i,j) < cut-off; L(i,j) = 0, otherwise diagonal elements $L(i,i) = degree \ k \ (i) = sum of all links for node i$

Correlations between fluctuations, $< dR(i).dR(j) > = (k_BT/k)*L^{-1}(i,j)$

The vibrational normal modes of the protein are governed by the eigenvalues of L: small eigenvalue implying large-scale motion

The Graph Laplacian

Consider diffusion processes on networks – i.e., a process by which something (a contagion, a signal or an idea) spreads across a network.

Let this "something" exist initially in varying quantities (say randomly chosen) on the different noes of a network, with the amount in node *i* being denoted X_i .

Also let this "something" **diffuse** along the links, flowing from node *j* to an adjacent node *i* at a rate governed by the "density gradient" $C(X_i - X_i)$ where *C* is the *diffusion constant*.

$$\Rightarrow \text{ the rate at which } X_i \text{ is changing is } dX_i/dt = C \Sigma_j A_{ij} (X_j - X_i)$$

$$\Rightarrow dX_i/dt = C \Sigma_j A_{ij} X_j - C X_i \Sigma_j A_{ij} = C \Sigma_j A_{ij} X_j - C X_i k_i = C \Sigma_j (A_{ij} - \delta_{ij} k_i) X_j$$

Thus, in matrix form $d\mathbf{X}/dt = C (\mathbf{A} - \mathbf{D}) \mathbf{X} = -C \mathbf{L} \mathbf{X}$ where

A:Adjaceny matrix, **D**: diagonal degree matrix, and, L = D - A is the Laplacian matrix

The diffusion equation can be solved in terms of the eigenvectors \mathbf{v}_i of the Laplacian \mathbf{L} : $\mathbf{X}(t) = \sum_i a_i(t) \mathbf{v}_i$ where the time evolution of the coefficients a_i can be expressed in terms of the eigenvalues $\lambda = \{\lambda_i\}$ of the Laplacian $\Rightarrow a_i(t) = a_i(0) \exp(-C \lambda_i t)$ All eigenvalues of the Laplacian matrix are non-zero, the smallest being $\lambda_i = 0$ corresponding to the eigenvector $\mathbf{I} = \{1, 1, 1, 1, ..., I\}$

Gaussian Network Model of Protein dynamics

Tirion (1996)

Potential energy of the network (under harmonic approximation):

$$V_{GNM} = \frac{\gamma}{2} \left[\sum_{i,j}^{N} (\Delta R_j - \Delta R_i)^2 \right] = \frac{\gamma}{2} \left[\sum_{i,j}^{N} \Delta R_i \Gamma_{ij} \Delta R_j \right] = \frac{\gamma}{2} \left[\Delta X^T \Gamma \Delta X + \Delta Y^T \Gamma \Delta Y + \Delta Z^T \Gamma \Delta Z \right]$$

Assuming that : Probability distribution of fluctuations is Gaussian...

$$p(\Delta X) \propto exp\left\{-\frac{\gamma}{2k_BT}\Delta X^T\Gamma\Delta X\right\} = exp\left\{-\frac{1}{2}\left(\Delta X^T\left(\frac{k_BT}{\gamma}\Gamma^{-1}\right)^{-1}\Delta X\right)\right\}$$

Including normalization constant $p(\Delta X) = \frac{1}{\sqrt{(2\pi)^N\frac{k_BT}{\gamma}|\Gamma^{-1}|}}exp\left\{-\frac{1}{2}\left(\Delta X^T\left(\frac{k_BT}{\gamma}\Gamma^{-1}\right)^{-1}\Delta X\right)\right\}$
... and isotropic
 $P(\Delta R) = p(\Delta X)p(\Delta Y)p(\Delta Z) = \frac{1}{\sqrt{(2\pi)^{3N}|\frac{k_BT}{\gamma}\Gamma^{-1}|^3}}exp\left\{-\frac{3}{2}\left(\Delta X^T\left(\frac{k_BT}{\gamma}\Gamma^{-1}\right)^{-1}\Delta X\right)\right\}$

Therefore correlation between fluctuations can be evaluated from the covariance $<\Delta X \cdot \Delta X^T >= \int \Delta X \cdot \Delta X^T p(\Delta X) d\Delta X = \frac{k_B T}{\gamma} \Gamma^{-1} = <\Delta Y \cdot \Delta Y^T >= <\Delta Z \cdot \Delta Z^T >= \frac{1}{3} <\Delta R \cdot \Delta R^T >$

Correlations between fluctuations, $dR(i).dR(j) > = (k_BT/\gamma)^*\Gamma^{-1}(i,j)$

The vibrational normal modes of the protein are governed by the eigenvalues of Γ : small eigenvalue implying large-scale motion

The spectrum of eigenvalues of L for Kirbac I. I protein 10³ 4 very small eigenvalues indicate dominance of largest scale motion by - 10² 4 sub-units.

Other large scale motions: possibly dominated by modular structure

The eigenvector components of the smallest eigenvalues of L

The eigenvector components corresponding to the smallest non-zero eigenvalues indicate how the module motions are correlated

Similar analysis of the Internet in Eriksen et al, PRL 90 (2003) 148701

But the Protein Contact Network also contains links that correspond to the backbone...

Long-range Interaction Network (LIN)

...which does not give us much information about the folded tertiary structure of the protein

To focus on the cross-links, we need to construct the

obtained from PCN by excluding links among spatially neighboring nodes along the backbone

Example:

LIN may be constructed from PCN by removing links between nodes corresponding to a *cumulative spatial distance* ≤ 10 Å.

First, we obtain the

Cumulative Distance Matrix (CDM)

i.e., Euclidean distances between all pairs of C- α atoms $_{_{\rm 3JS3\,A}}$

Next, we obtain the

Backbone Adjacency Matrix (BAM)

from the CDM by retaining only those links corresponding to Euclidean distance < 10 A

Finally, the Long-range Interaction Network (LIN) is obtained by keeping those links in PCN which do <u>not</u> appear in BAM

