Mathematical Methods I Assignment 3

Due on November 16, 2012

- 1. Compute the sum of all the *n*-th roots of 1 for n=2, 3 and 4. Also indicate the general expression for arbitrary integer n > 1.
- 2. Can you solve for z in $e^z = 0$?
- 3. Simplify the following numbers:
 - (a) $\frac{1+i}{1-i}$
 - (b) $\frac{-1+i\sqrt{3}}{1+i\sqrt{3}}$
 - (c) $(\frac{\sqrt{3}+i}{1+i})^2$
 - (c) $\left(\frac{1+i}{1+i}\right)$
- 4. Plot the trajectories of the roots of the quadratic equation $z^2 + bz + c = 0$ in the complex plane as the parameter b is varied from $-\infty$ to ∞ for the two cases (i) c = 1 and (ii) c = -1.
- 5. By integrating the relation $\frac{1}{1+x^2} = \frac{i}{2}(\frac{1}{x+i} \frac{1}{x-i})$, show that $\int_0^1 \frac{dx}{1+x^2} = \frac{\pi}{4}$
- 6. Do the following equations have any roots other than real ones ?
 - (a) $\sin(z) = 0$
 - (b) $\cos(z) = 0$
 - (c) $\tan(z) = 0$
- 7. Write the Laurent series expansion about the singularity at z = i of the function $1/(1 + z^2)$. [Hint: Note that $1 + z^2 = (z - i)(z + i) = (z - i)(2i + z - i)$ and use the binomial expansion.]
- 8. Evaluate $\int_0^i dz \frac{1}{1-z^2}$.
- 9. Obtain the Laurent series expansion about z = 0 with (i) |z| < 1 and (ii) |z| > 1 for the following functions. Also obtain the residue at z = 0 for each function for |z| < 1.
 - (a) $\sin(z)/z^4$
 - (b) $\frac{e^z}{z^2(1-z)}$
- 10. Evaluate $\int_C dz e^{-z} z^{-n}$ where C is a circle of radius R about the origin.
- 11. Evaluate $\int_{-\infty}^{\infty} dx \frac{\sin^2(bx)}{x(a^2+x^2)}$.