Mathematical Methods I Assignment 2

Due on September 18, 2012

- 1. Determine if the following are vector spaces with the usual rules for addition and multiplication by scalars and if not, state which axiom(s) they violate:
 - (a) Quadratic polynomials of the form $ax^2 + bx$
 - (b) Quadratic polynomials of the form $ax^2 + bx + 1$
 - (c) Quadratic polynomials of the form $ax^2 + bx + c$ with a + b + c = 0
 - (d) Quadratic polynomials of the form $ax^2 + bx + c$ with a + b + c = 1
- 2. Show that the set of all polynomials in x having degree $\leq N$ and only even powers, is a vector space and find its dimension. What if we allowed only odd powers instead ?
- 3. For the vectors in three dimensions: $\mathbf{a_1} = \hat{x} + \hat{y}$, $\mathbf{a_2} = \hat{y} + \hat{z}$ and $\mathbf{a_3} = \hat{z} + \hat{x}$, use the Gram-Schmidt procedure to construct an orthonormal basis starting from $\mathbf{a_1}$.
- 4. Consider the vector space formed by all polynomials of degree ≤ 4 satisfying $\int_{-1}^{1} dxx f(x) = 0$. Does the set $[1, x^2, x^4, 3x - 5x^3]$ form a complete basis for the space ? What is the dimensionality of the space ? If we did not have the constraint $\int_{-1}^{1} dxx f(x) = 0$ what would be the dimensionality of the space ?
- 5. If $f_3 = f_1 + f_2$ means $f_3(x) = Af_1(x a) + BF_2(x b)$ for fixed a, b, A, B, for what values of these constants is this a vector space ?
- 6. On the vector space of cubic polynomials, the differentiation operator d/dx is defined as the derivative of such a polynomial is also a polynomial.
 - (a) Use the basis $[1, x, x^2, x^3]$ to compute components of this operator
 - (b) Compute the components of the double differentiation operator d^2/dx^2
 - (c) Compute the square of the first matrix and compare it with the second matrix how are they related ?
 - (d) Use another basis, viz, that of the Legendre polynomials $P_0(x) = 1$, $P_1(x) = x$, $P_2(x) = (3/2)x^2 - (1/2)$, $P_3(x) = (5/2)x^3 - (3/2)x$ and find the components of d/dx and d^2/dx^2 operators.
- 7. The force on a charge q moving with velocity **v** in a magnetic field **B** is $\mathbf{F} = q\mathbf{v} \times \mathbf{B}$. The operation $\mathbf{v} \times \mathbf{B}$ defines a linear operator on **v** stated as $f(\mathbf{v}) = \mathbf{v} \times \mathbf{B}$.
 - (a) What are the components of this operator expressed in terms of the three components of the vector **B** ?
 - (b) What are the eigenvalues and eigenvectors of this operator ? (Be careful to choose the appropriate basis to reduce the amount of algebra)
- 8. Write the characteristic polynomial corresponding to the eigenvalue equation of a general 2×2 matrix A. In place of the eigenvalue λ in the polynomial put the matrix A itself (the constant term will have to include the identity matrix factor I) and verify the Cayley-Hamilton Theorem, i.e., that the matrix satisfies its own characteristic equation making the polynomial in A the zero matrix.
- 9. Obtain the eigenvalues and eigenvectors of the rotation matrix.