Mathematical Methods I

Assignment 1

Due on August 16, 2012

- 1. Perform the following indefinite integrals
 - (a) $\int x \sin(2x) dx$
 - (b) $\int x \ln(x) dx$
 - (c) $\int x \left[\cos(3x) + 4\sin(3x)\right] dx$
- 2. Evaluate
 - (a) $\int_0^\infty \exp(-\alpha x) dx$
 - (b) $\int_0^\infty \mathbf{x}^n \exp(-\alpha \mathbf{x}) d\mathbf{x}$ (Use paramteric differentiation, i.e., differentiating w.r.t. α within the integral)
 - (c) Using the above result show that Γ (n) = (n-1)! when n is a positive integer
- 3. Use the definition of error function to evaluate $\int_0^x t^2 \exp\left(-t^2\right) dt$. (Hint: introduce a parameter α in the integral definition of error function so that it has $\int_0^x \exp\left(-\alpha \ t^2\right) dt$ and differentiate it w.r.t. α . Next change variables in this integral from t to u such that $u^2 = \alpha \ t^2$ and differentiate this integral w.r.t. α . Use the fact that both integrals have the same value.)
- 4. Use similar technique as above to show $\Gamma(x+1) = x \Gamma(x)$.
- 5. Sketch the following functions by hand (do not use computers)
 - (a) $x/(x^2 + a^2)$
 - (b) $x/(x^3 + a^3)$
 - (c) $(x-a)\exp(-ax)$
 - (d) $(x-a)/[a^2 (x-a)^2]$