taining the highest order derivative drops out of the governing equation. Then the
initial conditions or boundary conditions can’t be satisfied. Such a limit is often
called singular. For example, in fluid mechanics, the limit of high Reynolds num-
ber is a singular limit; it accounts for the presence of extremely thin “boundary lay-
ers” in the flow over airplane wings. In our problem, the rapid transient played the
role of a boundary layer—it is a thin layer of time that occurs near the boundary
t=0.

The branch of mathematics that deals with singular limits is called singular per-
turbation theory. See Jordan and Smith (1987) or Lin and Segel (1988) for an in-
troduction. Another problem with a singular limit will be discussed briefly in
Section 7.5.

3.6 Imperfect Bifurcations and Catastrophes

As we mentioned earlier, pitchfork bifurcations are common in problems that have
a symmetry. For example, in the problem of the bead on a rotating hoop (Section
3.5), there was a perfect symmetry between the left and right sides of the hoop. But
in many real-world circumstances, the symmetry is only approximate—an imper-
fection leads to a slight difference between left and right. We now want to see what
happens when such imperfections are present.

For example, consider the system

x=h+rx—x. (1)

If h=0, we have the normal form for a supercritical pitchfork bifurcation, and
there’s a perfect symmetry between x and —x. But this symmetry is broken when
h # 0 ; for this reason we refer to 4 as an imperfection parameter.

Equation (1) is a bit harder to analyze than other bifurcation problems we’ve
considered previously, because we have two independent parameters to worry
about (2 and r). To keep things straight, we’ll think of r as fixed, and then exam-
ine the effects of varying h. The first step is to analyze the fixed points of (1).
These can be found explicitly, but we’d have to invoke the messy formula for the
roots of a cubic equation. It’s clearer to use a graphical approach, as in Example
3.1.2. We plot the graphs of y = rx— x* and y = —h on the same axes, and look for
intersections (Figure 3.6.1). These intersections occur at the fixed points of (1).
When r <0, the cubic is monotonically decreasing, and so it intersects the hori-
zontal line y = —h in exactly one point (Figure 3.6.1a). The more interesting case is
r> 0 then one, two, or three intersections are possible, depending on the value of
h (Figure 3.6.1b).
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Figure 3.6.1

The critical case occurs when the horizontal line is just tangent to either the lo-
cal minimum or maximum of the cubic; then we have a saddle-node bifurcation.
To find the values of ~ at which this bifurcation occurs, note that the cubic has a
local maximum when <4 (rx — x*)=r—3x* = 0. Hence

and the value of the cubic at the local maximum is

2r |r
3

rx —(X =—_|— .
max ( max) 3 3

Similarly, the value at the minimum is the negative of this quantity. Hence saddle-
node bifurcations occur when 2= *h (r), where

h.(r)= %\E

Equation (1) has three fixed points for |h| < k_(r) and one fixed point for |4 > & (r).

To summarize the results so far, we plot the bifurcation curves h=1h(r) in
the (r,h) plane (Figure 3.6.2). Note that the two bifurcation curves meet tangen-
tially at (r,h) = (0,0) ; such a point is called a cusp point. We also label the regions
that correspond to different numbers of fixed points. Saddle-node bifurcations oc-
cur all along the boundary of the regions, except at the cusp point, where we have a
codimension-2 bifurcation. (This fancy terminology essentially means that we
have had to tune two parameters, £ and r, to achieve this type of bifurcation. Un-
til now, all our bifurcations could be achieved by tuning a single parameter, and
were therefore codimension-1 bifurcations.)
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Figure 3.6.2

Pictures like Figure 3.6.2 will prove very useful in our future work. We will
refer to such pictures as stability diagrams. They show the different types of
behavior that occur as we move around in parameter space (here, the (r,h)
plane).

Now let’s present our results in a more familiar way by showing the bifurcation
diagram of x* vs. r, for fixed & (Figure 3.6.3).

X X

(a) h=0 (b) B0

Figure 3.6.3

When 2 =0 we have the usual pitchfork diagram (Figure 3.6.3a) but when 220,
the pitchfork disconnects into two pieces (Figure 3.6.3b). The upper piece consists
entirely of stable fixed points, whereas the lower piece has both stable and unstable
branches. As we increase r from negative values, there’s no longer a sharp transi-
tion at r = 0; the fixed point simply glides smoothly along the upper branch. Fur-
thermore, the lower branch of stable points is not accessible unless we make a
fairly large disturbance.
Alternatively, we could plot x * vs. k, for fixed r (Figure 3.6.4).
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When r <0 there’s one stable fixed point for each 2 (Figure 3.6.4a). However,
when r >0 there are three fixed points when |/| < 4,(r), and one otherwise (Figure
3.6.4b). In the triple-valued region, the middle branch is unstable and the upper and
lower branches are stable. Note that these graphs look like Figure 3.6.1 rotated by
90°.

There is one last way to plot the results, which may appeal to you if you like
to picture things in three dimensions. This method of presentation contains all
of the others as cross sections or projections.
x If we plot the fixed points x* above the
(r,h) plane, we get the cusp catastrophe
surface shown in Figure 3.6.5. The surface
folds over on itself in certain places. The pro-
jection of these folds onto the (r,k) plane
yields the bifurcation curves shown in Figure
Rh\ 3.6.2. A cross section at fixed h yields Fig-
r ure 3.6.3, and a cross section at fixed r

Figure 3.6.5 yields Figure 3.6.4.

The term catastrophe is motivated by the
fact that as parameters change, the state of the system can be carried over the edge
of the upper surface, after which it drops discontinuously to the lower surface (Fig-

ure 3.6.6). This jump could be truly cata-

strophic for the equilibrium of a bridge or a

building. We will see scientific examples of

catastrophes in the context of insect out-

(N breaks (Section 3.7) and in the following ex-

ample from mechanics.

h For more about catastrophe theory, see
% Zeeman (1977) or Poston and Stewart
(1978). Incidentally, there was a violent

controversy about this subject in the late

r
Figure 3.6.6
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