When N, < k/G, the fixed point at n* =0 is stable. This means that there is no
stimulated emission and the laser acts like a lamp. As the pump strength N, is in-
creased, the system undergoes a transcritical bifurcation when N, =k/G. For
N, >k/G, the origin loses stability and a stable fixed point appears at
n*=(GN, ~k)/aG >0, corresponding to spontaneous laser action. Thus
N, =k/G can be interpreted as the laser threshold in this model. Figure 3.3.3
summarizes our results.

n l laser

Figure 3.3.3

Although this model correctly predicts the existence of a threshold, it ignores
the dynamics of the excited atoms, the existence of spontaneous emission, and sev-
eral other complications. See Exercises 3.3.1 and 3.3.2 for improved models.

3.4 Pitchfork Bifurcation

We turn now to a third kind of bifurcation, the so-called pitchfork bifurcation.
This bifurcation is common in physical problems that have a symmetry. For ex-
ample, many problems have a spatial symmetry between left and right. In such
cases, fixed points tend to appear and disappear in symmetrical pairs. In the buck-
ling example of Figure 3.0.1, the beam is stable in the vertical position if the load
is small. In this case there is a stable fixed point corresponding to zero deflection.
But if the load exceeds the buckling threshold, the beam may buckle to either the
left or the right. The vertical position has gone unstable, and two new symmetri-
cal fixed points, corresponding to left- and right-buckled configurations, have
been born.

There are two very different types of pitchfork bifurcation. The simpler type is
called supercritical, and will be discussed first.

Supercritical Pitchfork Bifurcation
The normal form of the supercritical pitchfork bifurcation is

X=rx—x’. (1)
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Note that this equation is invariant under the change of variables x — —x . That
is, if we replace x by —x and then cancel the resulting minus signs on both sides
of the equation, we get (1) back again. This invariance is the mathematical ex-
pression of the left-right symmetry mentioned earlier. (More technically, one
says that the vector field is equivariant, but we’ll use the more familiar lan-
guage.)

Figure 3.4.1 shows the vector field for different values of r.

\]
x - x

(a) r<0 () r=0 ©) r>0

J

Figure 3.4.1

When r < 0, the origin is the only fixed point, and it is stable. When r = 0, the ori-
gin is still stable, but much more weakly so, since the linearization vanishes. Now
solutions no longer decay exponentially fast—instead the decay is a much slower
algebraic function of time (recall Exercise 2.4.9). This lethargic decay is called
critical slowing down in the physics literature. Finally, when r > 0 , the origin has
become unstable. Two new stable fixed points appear on either side of the origin,
symmetrically located at x* = ++/r.

The reason for the term “pitchfork™ becomes clear when we plot the bifurcation
diagram (Figure 3.4.2). Actually, pitchfork trifurcation might be a better word!

X

stable

stable me——— - - - unstable

stable

Figure 3.4.2
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EXAMPLE 3.4.1:

Equations similar to x = —x + Stanh x arise in statistical mechanical models of
magnets and neural networks (see Exercise 3.6.7 and Palmer 1989). Show that this
equation undergoes a supercritical pitchfork bifurcation as 8 is varied. Then give
a numerically accurate plot of the fixed points for each .

Solution: We use the strategy of Example 3.1.2 to find the fixed points. The
graphs of y = x and y = Btanh x are shown in Figure 3.4.3; their intersections cor-
respond to fixed points. The key thing to realize is that as  increases, the tanh
curve becomes steeper at the origin (its slope there is ). Hence for <1 the ori-
gin is the only fixed point. A pitchfork bifurcation occurs at S =1, x* =0, when
the tanh curve develops a slope of 1 at the origin. Finally, when > 1, two new
stable fixed points appear, and the origin becomes unstable.

B tanh x

B<l B=1 B>1
Figure 3.4.3

Now we want to compute the fixed points x * for each . Of course, one fixed
point always occurs at x* = 0; we are looking for the other, nontrivial fixed points.
One approach is to solve the
equation x*= Btanhx* nu-
merically, using the Newton-
Raphson method or some other
root-finding scheme. (See Press
et al. (1986) for a friendly and
informative discussion of nu-
merical methods.)

But there’s an easier way,
which comes from changing
'60 T —— B our point of view. Instead of
studying the dependence of
x* on 3, we think of x* as
the independent variable, and
then compute S = x */tanh x *. This gives us a table of pairs (x*, ). For each pair,
we plot B horizontally and x * vertically. This yields the bifurcation diagram (Fig-
ure 3.4.4).

6r

Figure 3.4.4
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The shortcut used here exploits the fact that f(x,)=-x+ Btanhx depends
more simply on 3 than on x . This is frequently the case in bifurcation problems—
the dependence on the control parameter is usually simpler than the dependence on
X.n

EXAMPLE 3.4.2:

Plot the potential V(x) for the system x = rx — x*, for the cases r<0, r=0,
and r>0.

Solution: Recall from Section 2.7 that the potential for x = f(x) is defined by
f(x)=-dV/dx. Hence we need to solve —dV/dx =rx— x> Integration yields
V(x)==%rx* +1 x*, where we neglect the arbitrary constant of integration. The cor-
responding graphs are shown in Figure 3.4.5.

Vv 14 14

r<(Q r=0 r>0

Figure 3.4.5

When r <0, there is a quadratic minimum at the origin. At the bifurcation value
r =0, the minimum becomes a much flatter quartic. For r >0, a local maxi-
mum appears at the origin, and a symmetric pair of minima occur to either side
of it. m

Subcritical Pitchfork Bifurcation

In the supercritical case x = rx —x° discussed above, the cubic term is stabiliz-
ing: it acts as a restoring force that pulls x(¢) back toward x = 0. If instead the cu-
bic term were destabilizing, as in

F=rx+x°, (2)

then we’d have a subcritical pitchfork bifurcation. Figure 3.4.6 shows the bifurca-
tion diagram.
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