In the absence of damping and external driving, the motion of a pendulum is
governed by
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where 6 is the angle from the downward vertical, g is the acceleration due to
gravity, and L is the length of the pendulum (Figure 6.7.1).
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Figure 6.7.1

We nondimensionalize (1) by introducing a frequency @ = /g/L and a dimen-
sionless time 7 = wt. Then the equation becomes

6+sin@=0 Q)

where the overdot denotes differentiation with respect to 7. The corresponding
system in the phase plane is

8=y (3a)
p=-sinf (3b)

where v is the (dimensionless) angular velocity.

The fixed points are (6%, v*) = (km, 0), where kis any integer. There’s no phys-
ical difference between angles that differ by 2x, so we’ll concentrate on the two
fixed points (0,0) and (7,0). At (0,0), the Jacobian is

0 1
A=
-1 0
so the origin is a linear center.
In fact, the origin is a nonlinear center, for two reasons. First, the system (3) is
reversible: the equations are invariant under the transformation 7 — -7, v — -v.
Then Theorem 6.6.1 implies that the origin is a nonlinear center.

Second, the system is also conservative. Multiplying (2) by # and integrating
yields

6(6 +sinf) =0 = 16% - cos = constant.
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The energy function
E8,v)=4+v? —cos@ 4)

has a local minimum at (0,0), since E = +(v> + ) — 1 for small (8, v). Hence Theo-
rem 6.5.1 provides a second proof that the origin is a nonlinear center. (This argument
also shows that the closed orbits are approximately circular, with 6° +v* = 2(E+1).)

Now that we’ve beaten the origin to death, consider the fixed point at (r,0).
The Jacobian is

A 0 1
1 o)
The characteristic equation is A° —1=0. Therefore A, =-1, A4, =1; the fixed
point is a saddle. The corresponding eigenvectors are v, = (I,—1) and v, = (1,1).

The phase portrait near the fixed points can be sketched from the information
obtained so far (Figure 6.7.2).
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Figure 6.7.2
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To fill in the picture, we include the energy contours E = 4+ v* —cos@ for different
values of E. The resulting phase portrait is shown in Figure 6.7.3. The picture is
periodic in the 6-direction,
as we’d expect.

Now for the physical inter-
pretation. The center corre-
sponds to a state of neutrally
stable equilibrium, with the
pendulum at rest and hanging
straight down. This is the low-
est possible energy state
Figure 6.7.3 (E=-1). The small orbits

surrounding the center repre-
sent small oscillations about equilibrium, traditionally called librations. As E increases,
the orbits grow. The critical case is E = 1, corresponding to the heteroclinic trajectories
joining the saddles in Figure 6.7.3. The saddles represent an inverted pendulum at rest;
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hence the heteroclinic trajectories represent delicate motions in which the pendulum
slows to a halt precisely as it approaches the inverted position. For E > 1, the pendulum
whirls repeatedly over the top. These rotations should also be regarded as periodic solu-
tions, since 8 = -z and 8 = +x are the same physical position.

Cylindrical Phase Space

The phase portrait for the pendulum is more illuminating when wrapped onto
the surface of a cylinder (Figure 6.7.4). In fact, a cylinder is the natural phase
space for the pendulum, because it incor-

9

porates the fundamental geometric dif-
ference between v and 6: the angular
E>1 velocity v is a real number, whereas 8 is
an angle.

There are several advantages to the
cylindrical representation. Now the pe-
riodic whirling motions look peri-
odic—they are the closed orbits that
encircle the cylinder for E > 1. Also, it
becomes obvious that the saddle points
in Figure 6.7.3 are all the same physical
state (an inverted pendulum at rest).
The heteroclinic trajectories of Figure
6.7.3 become homoclinic orbits on the
cylinder.

There is an obvious symmetry be-
tween the top and bottom half of Figure 6.7.4. For example, both homoclinic or-
bits have the same energy and shape. To highlight this symmetry, it is

clockwise .counterclockwise interesting (if a bit
whirling whirling mind-boggling at first)
to plot the energy verti-
cally instead of the an-
gular velocity v (Figure
6.7.5). Then the orbits
on the cylinder remain
at constant  height,
while the cylinder gets
bent into a U-tube. The
T E=1 two arms of the tube are
distinguished by the
sense of rotation of the
1 E=-1 pendulum, either clock-
wise or counterclock-
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Figure 6.7.4
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6.7 PENDULUM 171



wise. At low energies, this distinction no longer exists; the pendulum oscillates
to and fro. The homoclinic orbits lie at £ =1, the borderline between rotations
and librations.

At first you might think that the trajectories are drawn incorrectly on one
of the arms of the U-tube. It might seem that the arrows for clockwise and coun-
terclockwise motions should go in opposite directions. But if you think about
the coordinate system shown in Figure 6.7.6, you’ll see that the picture is
correct.
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Figure 6.7.6

The point is that the direction of increasing 6 has reversed when the bottom of the
cylinder is bent around to form the U-tube. (Please understand that Figure 6.7.6
shows the coordinate system, not the actual trajectories; the trajectories were
shown in Figure 6.7.5.)

Damping

Now let’s return to the phase plane, and suppose that we add a small amount of
linear damping to the pendulum. The governing equation becomes

O+bO+sinh=0

where b >0 is the damping strength. Then centers become stable spirals while
saddles remain saddles. A computer-generated phase portrait is shown in Figure
6.7.7.
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Figure 6.7.7

The picture on the U-tube is clearer. All trajectories continually lose altitude,
except for the fixed points (Figure 6.7.8).
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Figure 6.7.8

We can see this explicitly by computing the change in energy along a trajectory:

9 =—d—(%é2 —cose)zé(é+sin6) =-b6*<0.

dt drt

Hence E decreases monotonically along trajectories, except at fixed points where
6=0.

The trajectory shown in Figure 6.7.8 has the following physical interpretation:
the pendulum is initially whirling clockwise. As it loses energy, it has a harder
time rotating over the top. The corresponding trajectory spirals down the arm of
the U-tube until E < 1; then the pendulum doesn’t have enough energy to whirl,
and so it settles down into a small oscillation about the bottom. Eventually the mo-
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tion damps out and the pendulum comes to rest at its stable equilibrium.

This example shows how far we can go with pictures—without invoking any
difficult formulas, we were able to extract all the important features of the pendu-
lum’s dynamics. It would be much more difficult to obtain these results analyti-
cally, and much more confusing to interpret the formulas, even if we could find
them.

6.8 Index Theory

In Section 6.3 we learned how to linearize a system about a fixed point. Lin-
earization is a prime example of a local method: it gives us a detailed micro-
scopic view of the trajectories near a fixed point, but it can’t tell us what happens
to the trajectories after they leave that tiny neighborhood. Furthermore, if the
vector field starts with quadratic or higher-order terms, the linearization tells us
nothing.

In this section we discuss index theory, a method that provides global informa-
tion about the phase portrait. It enables us to answer such questions as: Must a
closed trajectory always encircle a fixed point? If so, what types of fixed points are
permitted? What types of fixed points can coalesce in bifurcations? The method
also yields information about the trajectories near higher-order fixed points. Fi-
nally, we can sometimes use index arguments to rule out the possibility of closed
orbits in certain parts of the phase plane.

The Index of a Closed Curve

The index of a closed curve C is an integer that measures the winding of the
vector field on C. The index also provides information about any fixed points that
might happen to lie inside the curve, as we’ll see.

This idea may remind you of a concept in electrostatics. In that subject, one
often introduces a hypothetical closed surface (a “Gaussian surface”) to probe a
configuration of electric charges. By studying the behavior of the electric field

on the surface, one can determine the total amount

of charge inside the surface. Amazingly, the behav-

_ ior on the surface tells us what’s happening far away

inside the surface! In the present context, the electric

field is analogous to our vector field, the Gaussian

surface is analogous to the curve C, and the total
charge is analogous to the index.

Now let’s make these notions precise. Suppose

Figure 6.8.1 that x =f(x) is a smooth vector field on the phase

plane. Consider a closed curve C (Figure 6.8.1). This

curve is not necessarily a trajectory—it’s simply a loop that we’re putting in the

phase plane to probe the behavior of the vector field. We also assume that C is a
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