Self-Avoiding Walks

What Are They?

Self-avoiding walks are discrete paths without self-
intersections. For our purposes they live in the d-
dimensional integer lattice Z%, which consists of the
pointsin R whose components areall integers. Elements
of Z* will be referred to as sites. Two sites are called near-
est neighbours if they are separated by unit Euclidean
distance. An n-step self-avoiding walk is then defined to
be an ordered set of n + 1 sites in Z* for which each con-
secutive pair of sites consists of nearest neighbours and
in which no site occurs more than once (Fig. 1). It is this
last feature that gives the walk its self-avoiding charac-
ter and turns out to make life difficult. For despite its
simple definition, the self-avoiding walk leads to math-
ematical problems which are simple enough to state to
the mathematically uninitiated, but which are very hard
to solve and mainly still open. This article gives an in-
troduction to some of these mathematical problems; a
detailed account can be found in [23].

The self-avoiding walk has been used for some time
as a model of linear polymers. Linear polymers are
molecules which form in long chains of basic units called
monomers. The chains can get pretty long: some con-
sist of about 10° monomers. Polymer scientists want to
know how many different configurations an n-monomer
chain can adopt, and also how far apart the endpoints
of the molecule typically are, assuming each configu-
ration is equally likely. These questions translate into
questions about self-avoiding walks, where the self-
avoidance constraint models the excluded volume effect:
No two monomers can occupy the same region in space.
For polymers, n is very large, so it is natural to ask about
the asymptotic behaviour of properties of the set of n-
step self-avoiding walks, in the limit as n goes to in-
finity. Real polymers live in the continuum rather than
on a lattice, but this local issue turns out to be largely
irrelevant for long-range questions, and the lattice ap-
proximation is a good one for large n. For polymers,
the most relevant dimension is d = 3, but 2-dimensional
self-avoiding walks are also important as a model of
polymers constrained between two narrowly separated
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Figure 1. A 2-dimensional self-avoiding walk with 105 steps,
beginning at 0. A subsequent step to the left would eventu-
ally lead to a trap.
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parallel planes. Itis perhaps less clear what dimensions 4
and higher have to do with polymers, but it is instructive
nevertheless to study how the behaviour of the model
changes as a function of the spatial dimension d.
Visualizing a walk as a path in the lattice, the self-
avoidance constraint says that the path has no loops.
Although a walk is defined to be a sequence of sites, it
is useful to think of it as the continuous path formed by
joining each pair of consecutive sites by the intervening
unit line segment; see Figure 1. Actually, the term “walk”
can lead to some confusion, and perhaps “chain” would
be better. The self-avoiding walk is not a model of poly-
mers which are growing in time: n is static. It is tempting
to try to think of the self-avoiding walk as a kind of non-
Markovian stochastic process (a Markov process forgets
its past, whereas the self-avoiding walk has to remember
its entire history), but the self-avoiding walk is not only
non-Markovian— it is also not a process. A walk may be
trapped and impossible to extend by another step.

The Connective Constant

Let ¢, denote the number of n-step self-avoiding walks
which begin at the origin. This measures the number of
possible configurations of a polymer of n+1 monomers.
For simple random walks, which have no self-avoidance

constraint, the analogue of ¢,, is just (2d)™ as there are 2d_

options for the walk at each step. The situation is not as
easy for self-avoiding walks, but we can at least say the
following. All possible (n + m)-step self-avoiding walks
can be formed by concatenating n-step self-avoiding
walks to m-step walks, but not all such concatenations
will be self-avoiding. This means that ¢,y m < ¢,¢, OF
in other words the sequence {c, } is submultiplicative.

Figure 2. A piece of the honeycomb lattice, the only lattice
for which the connective constant is believed to be precisely
known.
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Table 1. Rigorous lower and upper bounds on the connec-
tive constant p, together with estimates of actual values,
for dimensions 2, 3, 4, 5, 6. Estimated errors in the last
digit(s) are shown in parentheses.

d Lower Bound Estimate Upper Bound
2 2620027 26381585 (10)¢  2.695 76°

3 4.572140° 4.683 907 (22)° 4.756°

4 6.742945° 6.772 0 (5)f 6.832"

5  8.828529° 8.838 6 (8)® 8.881°

6 10.874038° 10.878 8 (9)8 10.903"

References: (a) [6], (b) [1], (c) [17], (d) [5, 111, (e) 8], (F) [9],
(g) [10].

It is an immediate consequence of submultiplicativity
that the sequence {(cy«)!/ 2k} is nonincreasing. With a bit
more work it can be shown that submultiplicativity en-

sures the existence of the limit . = lim,, . o c}lj ™ and that
¢n = p" for all n. This limit 4 is known as the connective
constant and was first shown to exist by Hammersley
and Morton [13]. Roughly speaking, ¢,, is of order p" for
large n, so that 4 measures the average number of pos-
sible next steps available for a long self-avoiding walk.
Of course, any particular walk can have anywhere from
zero to 2d — 1 possible next steps.

It is not hard to see that d" < ¢, < (2d)(2d — 1)},
and hence d < pu < 2d — 1. The lower bound is due to
the fact that walks which only take steps in positive co-
ordinate directions are surely self-avoiding. The upper
bound follows from the observation that the set of all
walks having no immediate reversals (steps which re-
verse their predecessor) includes all self-avoiding walks
and can be counted by noting that such a walk has 2d
choices for its first step and 2d — 1 for each subsequent
step.

Improving these estimateson y is an activity that some
people enjoy, and Table 1 gives the current status for di-
mensions 2 through 6. The estimates of the precise value
of y1 are obtained from series extrapolation methods: Val-
ues of ¢,, are enumerated on a computer (a nontrivial job)
for n as large as can be managed, and then p is estimated
from these data. For d = 2 the current world record is
n = 39, but this is changing rapidly. Table 2 gives the
known values in two dimensions.

The precise value of y is not known in any dimen-
sion. Early guesses that in two dimensions y equals
1+ V2 =24142...0re = 2.7182. .. have been ruled out
by the rigorous bounds. There is one interesting excep-
tion where . is believed to be known exactly: For the 2-
dimensional honeycomb lattice (Fig. 2) there is strong ev-
idence [26] from physical arguments that u = /2 + /2.
This intriguing value has been confirmed numerically,
but not yet by a rigorous proof.



Table 2. Values of ¢, on the 2-dimensional square lattice.
The most recent additions to this table are from [5].

] Cn n Cri
1 4 21 2 408 806 028
2 12 22 6 444 560 484
3 36 23 17 266 613 812
4 100 24 46 146 397 316
5 284 25 123 481 354 908
6 780 26 329712786 220
7 2172 27 881 317 491 628
8 5916 28 2351 378 582 244
9 16 268 29 6279 396 229 332

10 44100 30 16 741 957 935 348

11 120 292 31 44 673 816 630 956

12 324 932 32 119034 997 913 020

13 881 500 33 317 406 598 267 076

14 2374 444 34 845279 074 648 708

15 6416 596 35 2252534 077 759 844

16 17 245 332 36 5995740499 124 412

17 46466 676 37 15968852 281 708 724

18 124 658 732 38 42486750 758 210 044

19 335116620 39 113101 676 587 853 932

20 897697 164

Because of trapping, it is not immediately apparent
even that ¢, < ¢, for all n, although this strict mono-
tonicity has been proved recently [27]. In fact, one would
expect from the definition of the connective constant that
cn+1/cn approaches the limiting value of y as n — oo,
but this has only been proved for d > 5 and remains
open for d = 2,3, 4. (The case of d = 1 is trivial for self-
avoiding walks.) Thirty years ago Kesten [19] showed
thatlim,, .. ¢,42/¢, = ¢ in all dimensions, using a so-
phisticated argument based on a “pattern theorem,” but
his proof doesn’t work if the subscript n + 2 is replaced
by n 4 1.

The Mean-Square Displacement

The standard measure of the average end-to-end dis-
tance of an n-step self-avoiding walk or polymer is the
mean-square displacement, which is denoted by (R2)
and is defined as the average of the squared Euclidean
distance between the endpoints of a walk. The aver-
age is taken over all possible n-step self-avoiding walks,
with each walk equally weighted. For the simple random
walk, which is a Markov process, an elementary proba-
bility argument' shows that the analogue of the mean-

'Let X; (4 = 1,2,3,...) be independent and identically distributed
random variables such that X, takes values equal to the 2d positive
and negative unit vectors in Z* with equal probabilities 1/2d. The
analogue of (R2) for the simple random walk is the variance of the
random variable X + --- + X,,. Because the variance of a sum of
independent random variables is the sum of the variances and because
the variance of each X is unity, the analogue of (R2) is n.

square displacement is exactly equal to n. In contrast, for
the self-avoiding walk the most “obvious” bounds on
the mean-square displacement remain unproven in low
dimensions. For a lower bound, it seems clear that the
self-avoidance constraint should force the self-avoiding
walk to move away from its starting point at least as fast
as the simple random walk, and hence that (R2) > O(n).
But it remains an open problem to prove this in dimen-
sions 2, 3, and 4. Nor has an upper bound of the form
(RZ) < O(n®~*) been proved in these dimensions for
positive ¢, even though it seems obvious that the ballis-
tic n* behaviour cannot be typical above one dimension.

Critical Exponents

Chemists and physicists can’t always afford to wait for
rigorous proofs when they need results, and this is the
case for the self-avoiding walk. They now have precise
conjectures about the behaviour of the number of n-step
walks and of the mean-square displacement, and more.
Actually some physicists and chemists may be surprised
to see their results reported as conjectures, as they regard
them rather as facts. Whatever we call them, they are
almost certainly correct. The consensus is that there are
critical exponents -y and v, and amplitudes A and D, such
that

Cp o~ AptnT (1)

(R%) ~ Dn?, (2)

Here the symbol ~ means that the left side is asymptotic
to the right side as n — oo, in the sense that their ratio
has limiting value of unity.

These critical exponents are the subject of a consider-
able body of research, not least because they are believed
to be universal. Universality means that they should de-
pend on the spatial dimension and on almost nothing
else. For example, the exponents are believed to have
the same value on all 2-dimensional lattices such as the
square or honeycomb. This will certainly not be the case
for the connective constant, which describes the average
number of next steps available for a long self-avoiding
walk and, hence, depends greatly on the lattice. Because
they are believed to be universal, the critical exponents
are physically more meaningful than the connective con-
stant. Their dependence on dimension makes it natural
to study the self-avoiding walk in general dimensions,
not just in dimensions 2 and 3 where the application to
polymers is most clear.

Numerous tools have been used to arrive at relations
(1) and (2). Important confirmation has been provided
by numerical studies, including extrapolation of exact
enumeration data and Monte Carlo simulation. The
renormalization group method has provided a power-
ful formal tool in the understanding of these relations.
Application of the renormalization group has been fa-
cilitated by a remarkable connection between the self-
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avoiding walk and the theory of ferromagnets, which
provides a link with the general theory of critical phe-
nomena and phase transitions. In this approach it has
proved useful to employ a representation in which the
spatial dimension d can be replaced by a complex variable
and to study the behaviour of the model as a function
of this upgraded dimension. Conformal field theory (the
physicist’s, not the algebraist’s, field theory) has played
an important role in two dimensions.

Relations (1) and (2) were recently proved for dimen-
sions 5 and higher by Hara and Slade [15, 16], with the
values v = 1 and v = 1/2. These are the same values as
for the simple random walk, which indicates that the self-
avoidance constraint is not playing a terribly dramatic
role in high dimensions. It is, however, known that D is
strictly greater than 1 for d > 5: The self-avoidance con-
straint does push the walk away from the origin faster
than simple random walk, but only at the level of the am-
plitude and not at the level of the exponent. Ford = 5 the
bounds 1.098 < D < 1.803 give limits on this effect; as
d — oo itis known that D approaches the corresponding
simple random walk value of 1.

The proof of these results relies on an expansion
known as the lace expansion, first introduced by Brydges
and Spencer [4]. This expansion has its roots in the clus-
ter expansions of statistical mechanics and constructive
quantum field theory. Brydges and Spencer used the
lace expansion to study the weakly self-avoiding walk
in more than four dimensions. The weakly self-avoiding
walk involves a measure on simple random walks in
which all self-avoiding walks receive the same weight,
whereas walks which intersect themselves receive a
slightly smaller weight—there is a small penalty for
each intersection. The weakly self-avoiding walk is be-
lieved on the basis of the renormalization group to have
the same critical exponents as the usual self-avoiding
walk whenever the penalty for intersections is strictly
positive (an example of universality), and the small pa-
rameter helps a lot with convergence issues. The Hara—
Slade proof involves instead using the inverse dimension
as a small parameter. More precisely, the small param-
eter is proportional to (d — 4)~!, which is a serious but
surmountable hindrance whend = 5.

It is perhaps not surprising that high dimensions are
easier to treat because in high dimensions it is more dif-
ficult for a walk to run into itself, and, therefore, the
self-avoidance constraint is weaker. Four dimensions is
the borderline case here, as is well known from the the-
ory of simple random walks [21]. For example, the prob-
ability that two independent simple random walks of
length n do not intersect remains bounded away from
zero as n — oo for dimensions d > 4, but not for d < 4.
Nevertheless, it is still a nontrivial problem to treat the
high-dimensional case, and the proof given in [15, 16] is
long, technical, and computer—assisted.

For d = 4 it is believed on the basis of physical and
numerical arguments that the critical exponents are the
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same as for d > 5, but that the right sides in relations
(1) and (2) should be modified by the insertion of factors
equal to the fourth root of the logarithm of n. This is a
subtle deviation from simple random walk behaviour,
and four dimensions is particularly amenable to renor-
malization group analysis. Indeed, in the physics litera-
ture [22] one finds that three dimensions can be treated
by expanding about four dimensions in a complex pa-
rameter ¢ = 4—dand thensetting ¢ = 1. This e-expansion,
introduced 20 years ago by Wilson and Fisher, has be-
come a standard tool in the renormalization group. Al-
though it remains unclear how to apply such arguments
to study d = 3 in a mathematically rigorous way, impor-
tant steps have recently been taken in making renormal-
ization group arguments rigorous for the weakly self-
avoiding walk in four dimensions [2, 3, 18].

For d = 3 it is believed that ~ is about 1.162 and v is
about 0.588, whereas for d = 2 it is believed that v is ex-
actly equal to the astonishing value 43 /32 and v is exactly
equal to 3/4. These 2-dimensional values were first pre-
dicted by Nienhuis [26] on the basis of connections with
the theory of ferromagnetism. Numerical work leaves
little room for doubt that these values are correct, but a
proof is lacking.

It will likely be some time before things are completely
settled in a mathematically rigorous fashion in dimen-
sions 2, 3, and 4. The 30-year-old bounds

u" exp[Cn'/?], d=2
R exp{an/S logn], d=3 (3)
p" exp[Cn'/® log n|, d=4,

which are due to Hammersley and Welsh [14] and Kesten
[20], have not been improved, nor has the submultiplica-
tivity bound ¢, > p™ been improved in dimensions 2, 3,
or 4. The bounds (3), whose proofs have at their heart
an elegant argument relying on submultiplicativity, are
still a long way from (1). And as has already been men-
tioned, the situation is even more embarrassing for the
mean-square displacement.

Monte Carlo Methods

Suppose you want to measure the mean-square displace-
ment on a computer, to check the asymptotic relation (2).
One way is to compute (R2) exactly for as many small
values of n as you can and then extrapolate, and a lot of
work has been done in that direction [12].

Another way is to do a Monte Carlo experiment. In a
Monte Carlo experiment, you first fix a value of n and
generate a lot of (hopefully) independent examples of
n-step self-avoiding walks, and then take the average of
the square displacements of this sample. If your sample
is “typical,” then the measured average should bea good
approximation to the true mean-square displacement (in
which the average is taken over all n-step self-avoiding



walks and not just your particular sample). The process
can be repeated for several different values of n, and the
results fitted to (2). Interesting algorithmic issues arise.

How do you generate a random sample of 100-step
self-avoiding walks? One way that jumps to mind is to
do the following. Start by constructing the first step, by
picking a neighbour of the origin at random. Then pro-
ceed inductively by choosing your next site at random
from those neighbours of your current site which have
not previously been visited, until you have a 100-site
walk. If in this process you become trapped, so that any
next step would force an intersection, then discard the
walk and start over.

This is certainly a way of generating 100-step walks,
but unfortunately they will have the wrong probability
distribution. This can be easily seen by looking at a spe-
cific example: Consider 4-step walks in two dimensions.
The walk NEEE, where N denotes a step to the north (up-
wards) and E denotes a step to the east (to the right) has

probability } x § x 1 x § = 755, whereas the walk NESS

has probability } x 1 x 1 x I = 2. Because these two
walks have different probabilities of being generated by
the algorithm, taking averages over walks produced by
this algorithm will not be the same as taking averages
with respect to walks with the desired uniform distribu-
tion, in which all walks of the same length are equally
likely. Hence, measured quantities like the mean-square
displacement cannot be trusted if the walks are gener-
ated by this algorithm. Indeed, there are good reasons to
believe that the distribution of walks generated by this
algorithm (sometimes called “true” or “myopic” self-
avoiding walks) has very different properties from the
uniform distribution of the self-avoiding walk.

A second natural method is to begin with a particular
100-step walk, such as a straight line, and then to perform
a sequence of random modifications of the walk to gen-
erate new walks. Perhaps the simplest such modification
would be to perform local moves, which just change a few
(say up to k) contiguous sites of the walk. For example, a
small subwalk could be chosen randomly from within a
long walk and then replaced by a different self-avoiding
subwalk having the same length and endpoints (unless
the original subwalk occurs at the beginning or end of
the original walk, in which case the unattached endpoint
can move). If a self-avoiding walk is produced, then the
new walk is kept; otherwise the new walk is rejected and
we try again. The set of rules which are used to say how
replacements are made defines a specific algorithm. This
is usually arranged in such a way that the procedure is
reversible, which means that the probability of a partic-
ular transition being made is equal to the probability of
the reverse transition.

Unfortunately, all such algorithms suffer from the
following fundamental drawback. A theorem due to
Madras and Sokal [24] states that for any fixed k, any
such algorithm can explore only an exponentially small
subset of all n-step self-avoiding walks. More precisely,

given a reversible local algorithm in which each move
changes up to & contiguous sites, define a, (k) to be the
maximum, over all possible n-step initial walks, of the
number of walks which can be reached from the initial
walk by applying any number of allowed moves to the
initial walk. The Madras-Sokal theorem states that for
any fixed k,
lim sup an(k)”" < U.

Because the number of walks is at least 1", this means
that the algorithm explores only an exponentially small
subset of all walks.

The proof of this result relies on Kesten's pattern theo-
rem. A pattern is defined as a self-avoiding walk of some
fixed length. A proper pattern is a pattern that can occur
arbitrarily often in some self-avoiding walk, or, in other
words, one which does not inherently entail traps. The
pattern theorem says essentially that any given proper

Al andar se hace camino,
y al volver la vista atras
se ve la senda que nunca
se ha de volver a pisar.

Antonio Machado

(As you go you make the way, and looking back, you see
the path your feet will never tread again.)

pattern must appear often on all but an exponentially
small subset of self-avoiding walks. The theorem about
the local algorithms then follows by exhibiting a specific
pattern which is frozen, or, in other words, cannot be
changed by a local move. The number of occurrences of
the frozen pattern remains unchanged under the algo-
rithm. If there are few occurrences of the pattern, then
only a small subset of all self-avoiding walks can be
explored, by the pattern theorem. On the other hand, if
there is a large number of occurrences of the pattern, then
again only a small subset of all self-avoiding walks can
be explored as only the subwalks which are not part of
the occurrences of the frozen pattern are able to change.

An example in two dimensions of a proper pattern
which is frozen under local moves changing up to &k
contiguous sites is shown in Figure 3. A similar pattern
has been written dowrn in three dimensions. This has not
been done in higher dimensions, and, hence, the theorem
has not been completely proved for d > 4, but this could
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Figure 3. A frozen pattern for local moves.

likely be done with some effort. The pattern in Figure 3
is the (10k + 39)-step walk

X ES}CENAH-] W3sk+2.

An algorithm which does explore the entire sample
space of all n-step self-avoiding walks is the pivot algo-
rithm. In this algorithm, the first step is to choose a site
at random on a self-avoiding walk, thereby dividing the
walk into two pieces. Treating this site as the origin of the
lattice, one of the pieces is then acted upon by a random
lattice symmetry, namely, reflection or rotation. This has
the drawback that very often the resulting walk will not
be self-avoiding and the trial will therefore be rejected,
but this is compensated by the fact that the resulting
walk will typically be quite different from the original
walk, facilitating a rapid exploration of all corners of
the sample space. The pivot algorithm has been studied
by many people and used with great success; the most
in-depth analysis is in [25].

Related Problems

Not all polymers are linear. Some like to form branches
but still remain self-avoiding, and these branched poly-
mers are modelled by trees in the lattice (Figure 4). A
tree in the lattice is defined to be a finite connected set of
nearest-neighbour bonds having no closed loops, where
a nearest-neighbour bond is a unit line segment joining two
neighbouring sites. One can ask similar questions about
these, such as how many n-bond trees are there in the lat-
tice, and what is the average radius of gyration of these
trees (assuming they are equally likely)? These questions
are harder and less studied than the corresponding self-
avoiding walk questions.

Another related problem concerns lattice animals. (See
Figure 5.) A lattice animal is a finite connected cluster of
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Figure 4. A tree.

_L

Figure 5. A lattice animal.

bonds in the lattice, which, unlike a tree, is permitted
to form closed loops. If in two dimensions you replace
each bond by the square having the bond as diagonal,
then a lattice animal models a connected planar beast
composed of unit cells. How many are there, and how
big are they typically? It is believed that there are criti-
cal exponents for trees and animals analogous to those
in relations (1) and (2). The most detailed theorems for
trees and animals are also for high dimensions, this time
(strictly) above eight dimensions, where things appear to
be simpler. Very roughly speaking, trees and animals like
to be 4-dimensional objects, and life is therefore easier in
more than eight dimensions because two 4-dimensional
objects generically do not intersect in more than eight
dimensions.

Lattice animals are basic in the theory of percolation.
In percolation each nearest-neighbour bond in the infi-
nite lattice is assumed to be “occupied” with probability
pand “vacant” with probability 1 — p. Here p is fixed for
all bonds and the occupation status of different bonds is
independent. The set of occupied bonds decomposes ina
natural way into connected clusters, and each cluster will
be a lattice animal or its infinite generalization. Percola-
tion provides a model of a porous medium: The bonds
which are occupied correspond to pores which admit the



flow of fluid. These pores are to be thought of as micro-
scopic in size, so that fluid flow on a macroscopic scale
requires the existence of an infinite connected cluster of
occupied bonds.

It is known that for all dimensions greater than or
equal to 2 there is a phase transition in this model: There
is a critical value p. = p.(d) lying strictly between 0 and
1, such that for p < p. the probability is 0 that there
exists an infinite connected cluster of occupied bonds,
whereas for p > p, this probability is 1. In other words, if
the bond density p is less than p,, then there is certainly
no fluid flow on the macroscopic scale, but as soon as pis
above p. there certainly is such flow. For any p for which
there is an infinite occupied cluster, it is known that with
probability 1 the infinite cluster is unique: There cannot
be more than one.

Simulations and physical arguments suggest very
strongly that at p, itself there can be no infinite cluster
of occupied bonds, but this has been proved rigorously
only for d = 2 and for very high d. There are several
critical exponents that can be defined for percolation; for
example, one exponent is defined in terms of the rate of
divergence of the expected size of the connected cluster
containing the origin of Z%, asp / p.. This time it is
above six dimensions that existence of critical exponents
is best understood —there is still no rigorous proof of
their existence otherwise, although the numerical and
other evidence leaves little room for doubt that they are
out there waiting. Critical exponents and the nature of
percolation at and near p. is a subject which is attracting
great attention in the probability community these days;
a good introduction is [7].
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