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ON ISING'S MODEL OF FERROMAGNETISM

B Y MR R. PEIERLS

[Communicated by M. BORN]

[Received 16 May, read 26 October 1936]

Ising* discussed the following model of a ferromagnetic body: Assume N elemen-
tary magnets of moment yn to be arranged in a regular lattice; each of them is
supposed to have only two possible orientations, which we call positive and
negative. Assume further that there is an interaction energy U for each pair of
neighbouring magnets of opposite direction. Further, there is an external mag-
netic field of magnitude H such as to produce an additional energy of — fiH (+ fiH)
for each magnet with positive (negative) direction.

Ising solved the statistical problem only in the one-dimensional case and
showed that his model does not behave like a ferromagnetic body. For the purpose
of this discussion a ferromagnetic body may be defined as having the following
property: Consider a finite region of the body, containing n+ positive and n_
negative magnets. Then,for all distributions that occur with appreciable chance in
statistical equilibrium, the expression

tends to a finite non-vanishing value as n+ + n_ tends to oo.
In the meantime it was shown by Heisenbergf that the forces leading to

ferromagnetism are due to electron exchange. Therefore the energy function
is of a more complicated nature than was assumed by Ising; it depends not only
on the arrangement of the elementary magnets, but also on the speed with which
they exchange their places.

The Ising model is therefore now only of mathematical interest. Since, how-
ever, the problem of Ising's model in more than one dimension has led to a good
deal of controversy and in particular since the opinion has often been expressed
that the solution of the three-dimensional problem could be reduced to that of
the linear model and would lead to similar results, it may be worth while to give
its solution.

* Ising, Zeits.Jur Physik, 31 (1925), 253.
t W. Heisenberg, Zeits. fur Physik, 49 (1928), 619; for an account of the theory of

Heisenberg and the extensions by Bloch and others, see F. Bloch, Handbuch der Radiologie,
vi, 2 (Leipzig, 1934), 375.
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This solution has now become almost obvious because a number of mathe-
matically equivalent, although physically different, problems have been studied
by Bragg and Williams, Borelius, Fowler. Bethe and others*. In particular Bethe
has studied equations which with a suitable change of variables may be directly
applied to the Ising model without a magnetic field. The generalization required
for including a magnetic field is contained in a paper by the author f. We must
replace, in the formulae of that paper, empty and occupied sites by — and +
magnets and 2M — N = N (20 — 1) by the total moment in units of /x. If X denotes
again the number of neighbouring + magnets, it is easy to see that the number
of pairs of — magnets is z (^N — M) + X while there are zM — 2X pairs of neigh-
bouring oppositely directed magnets (z denotes the number of neighbours of each
lattice point). In the Ising model we ascribe the energy U to each pair of opposite
neighbouring magnets and the total energy thus becomes

Comparing this with A, equations (2) and (4), we see that we have to replace £, 77 by

Equations (9) and (10) of A then represent also the solution of the Ising problem in
Bethe's approximation and the discussion of the critical condition remains
unchanged. The Curie point, i.e. the temperature above which the ferromagnetic
properties vanish, is, from A, equation (14),

For 2 = 2 (linear chain), To vanishes, in agreement with Ising's result.
However, the above proof is not quite rigorous, since the method of A

depends on Bethe's approximation, introduced by A, equation (5), and it might be
argued that this is begging the question. Although the good convergence of
Bethe's method is reassuring, it is worth while to give a rigorous proof for the
ferromagnetic behaviour at low temperatures.

We give this proof for a two-dimensional square array (2 = 4), for which
the argument becomes particularly simple, and for H = 0.

Consider a square array of points arranged along the x and y direction, and
ascribe a sign + or — to each point. It is then possible to define boundaries which
separate the + from the — signs, such that, whenever two neighbours are of
opposite sign, arid only in this case, a boundary passes between them (cf. Fig. 1).
The boundaries determine the distribution of magnets completely except for
the possibility of replacing all positives by negatives and vice versa. If there is no
external field, this change makes no physical difference.

* W. L. Bragg and E. J. Williams, Proc. Roy. Soc. A. 145(1934), 699; Borelius, Ann. d.
Physik, 20 (1934), 57; R. H. Fowler, Proc. Roy. Soc. A. 149 (1935), 1; H. A. Bethe, Proc.
Roy. Soc. A. 150 (1935), 552.

•f Cf. the preceding paper. This will be referred to as A.
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There are closed boundaries and open ones, the latter starting and ending
on the edges of the array. We show that at sufficiently low temperatures the
area enclosed by closed boundaries and cut off by open ones is only a small
fraction of the total area. Hence the majority of the magnets must be of equal
sign and the model corresponds to our definition of a ferromagnet.

We give an upper limit for the number of boundary lines passing through
any one point, assuming statistical equilibrium. Each boundary that starts at
a given point may be described as a succession of steps of equal length, of which
each may have the direction +x, —x, +y or — y. Since each element of the
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Fig. 1. Exampleof boundary lines.

boundary separates two magnets of opposite sign, the boundary has an energy
LU, if L is its length, in units of the distance between neighbouring magnets.

However, not every succession of steps represents a possible boundary.
Boundaries are restricted by the conditions that

(1) A boundary must either return to its starting point, or end on an edge.

(2) It passes through none of its points more than once.

(3) Not more than two boundaries can pass through any one point and, if
there are two, the two steps adjoining the point on one boundary must be
different from those on the other.

(4) No part of a boundary can lie outside the array of magnets.
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(5) If two boundaries have two common points, it makes no physical difference
which of the two branches between these points is ascribed to either boundary.
Thus the same arrangement of magnets can be described by different sets of
boundaries, i.e. different sets of successions, of which only one has to be counted.

We shall, however, disregard the conditions (l)-(5). In this way we count
successions which in reality do not correspond to possible boundaries and thus
we overestimate the number of boundaries.

If we disregard these conditions, a succession of length L consists of L
independent steps, and, since for each of these there is a choice between four,
possibilities, the number of realizations is 4L. Thus the partition function of
successions is .. ^,A^i

/ = S (4e-t7'fcr)L = S (4A)L,

L L

where A=\Aj = e~vlkT.

If 4A > 1, this sum diverges and our upper limit becomes useless. If, however,
4A<1,

we have /=(1-4A)-1, (2)

and the average number of successions of length L, starting at one point, becomes

1-4A). (3)

Thus the average number of boundaries of length L, starting at one point, is less
than (3).

Consider first the closed boundaries. Every one of them may be considered as
starting from any one of its L points. Thus the total number of closed boundaries
of length L in the array of N points will be less than

Z(L)<|(4A) i ( l -4A). (4)

The areaenclosed byeach boundary of length L cannot exceed (L/4)2and the total
area enclosed by boundary lines is less than

If, say", 4e~ulkT < 0-8, this expression is less than £N. Thus the closed boundaries
cannot enclose more than a quarter of all magnets.

As for the open boundaries, they must start and end on the edge and, since
there are 4 y/N points on the edge, the number of open boundaries of length L
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An open boundary of length L cannot cut off more than %L2 atoms from the
array; and thus the total number of magnets cut off is less than

which is negligible for large N.
Thus it follows rigorously that for sufficiently low temperatures the Ising

model in two dimensions shows ferromagnetism and the same holds a fortiori also
for the three-dimensional model.

Our crude estimate gives as lower limit for the value of e^ulkT at the Curie
point a value close to £*, while the actual value, according to (1), is £ in Bethe's
approximation.

The author wishes to thank H. Betlie who suggested part of the above proof.

* This value could be considerably improved without difficulty. Taking into account
that according to condition (2) two successive steps must never be opposite to each other,
there is only a choice of three possibilities for all but the first step, and in this way we
easily obtain J instead of J.

xxxn, 3


