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Abstract: These lecture notes give a basic introduction to the physics of phase

transitions under non-equilibrium conditions. The notes start with a general

introduction to non-equilibrium statistical mechanics followed by four parts.

The first one discusses the universality class of directed percolation, which

plays a similar role as the Ising model in equilibrium statistical physics. The

second one gives an overview about other universality classes which have been

of interest in recent years. The third part extends the scope to models with

long-range interactions, including memory effects and so-called Lévy flights.

Finally, the fourth part is concerned with deposition-evaporation phenomena

leading to wetting transitions out of equilibrium.
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1. Introduction

This lecture is concerned with classical stochastic many-particle systems far away from
thermal equilibrium. Such systems are used as models of a much more complex physical
reality with many degrees of freedom in which chaotic or quantum-mechanical effects
lead effectively to a classical random dynamics on a coarse-grained scale.

In order to explain the notion of stochastic non-equilibrium systems, let us for
example consider an experimental setup of molecular beam epitaxy. On a fundamental
level a freshly deposited diffusing atom is described by a quantum-mechanical wave
function that evolves under the influence of various interactions with the substrate and
the environment. However, monitoring the particle by modern imaging techniques,
it seems to behave as a classical object that hops occasionally from one lattice site
to the other. In fact, in contrast to isolated quantum-mechanical particles, whose
wave packages spread in time, the deposited atom is exposed to a complex variety
of interactions and entanglements with the environment which lead to a continuous
decoherence of the quantum state [1]. This process of decoherence keeps the wave
package localized and thereby pinned to a certain lattice site as time proceeds. The
opposing quantum effect of recoherence, however, leads to occasional tunneling through
the surrounding energy barriers. Immediately after tunneling, decoherence again
localizes the wave function at the target site, destroying all information encoded in
quantum-mechanical phases. This means that several subsequent tunneling events are
effectively uncorrelated, provided that they are separated by time intervals that are much
larger than the typical decoherence time. It is this separation of time scales that allows
one to consider the particle as a classical object that evolves in time by spontaneous
uncorrelated random moves to neighboring sites. Using this classical picture it is no
longer necessary to consider the full wave function of the particle, rather it is sufficient
to characterize its state by the index of the lattice site to which it is pinned at time
t and the effective transition rates by which it hops to its nearest neighbors. This
interpretation can be extended to chemical reactions as well.

1.1. Master equation

More generally, a classical stochastic many-particle system is defined by a set C
of possible configurations of the particles c ∈ C. The process evolves in time by
instantaneous transitions c → c′ which occur spontaneously like in a radioactive decay
with certain rates wc→c′ ≥ 0. The set of all configurations, the transition rates and the
initial state fully define the stochastic model under consideration.

From the theoretical point of view an important object to study is the probability
Pt(c) to find the system at time t in a certain configuration c. Obviously this probability
distribution has to be normalized, i.e.,

∑

c Pt(c) = 1. While the evolution of the system’s
configuration is generally unpredictable due to its stochastic nature, the temporal
evolution of the probability distribution Pt(c) is predictable and given by a linear system
of differential equations. This system of equations, usually called master equation,
describes the flow of probability between different configurations in terms of gain and
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loss contributions:

∂

∂t
Pt(c) =

∑

c′
wc′→cPt(c

′)

︸ ︷︷ ︸

gain

−
∑

c′
wc→c′Pt(c)

︸ ︷︷ ︸

loss

. (1)

The gain and loss terms balance one another so that the probability distribution remains
normalized as time proceeds. It is important to note that the coefficients wc→c′ are rates

rather than probabilities and carry the unit [time]−1. Therefore, rates may be larger
than 1 and can be rescaled by changing the time scale.

In a more compact form this set of equation may be written as

∂t|Pt〉 = −L|Pt〉 , (2)

where |Pt〉 denotes a vector whose entries are the probabilities Pt(c). This means
that the corresponding vector space has a dimension equal to the number of possible
configurations. The so-called Liouville operator L generates the temporal evolution and
is defined in the canonical configuration basis by the matrix elements

〈c′|L|c〉 = −wc→c′ + δc,c′
∑

c′′
wc→c′′. (3)

A formal solution of this first-order differential equation is given by |Pt〉 = exp(−Lt)|P0〉,
where |P0〉 denotes the initial probability distribution at t = 0. This means that |Pt〉
can be expressed as a sum over exponentially varying eigenmodes.

Since most stochastic processes are irreversible and therefore not invariant under
time reversal, the Liouville operator L is generally non-hermitean. However, the form
of L is restricted by the requirements of the aforementioned balance between gain and
loss terms as well as by the positivity of the rates. In the mathematical literature such
matrices are usually called intensity matrices, meaning that all diagonal (off-diagonal)
entries are real and positive (negative) and that the sum over each column of the matrix
vanishes. The eigenvalues of an intensity matrix may be complex, indicating oscillatory
behavior, but their real part is always non-negative. Moreover, probability conservation
ensures that the spectrum includes at least one zero mode L|Ps〉 = 0, representing
the stationary probability distribution of the system. The other eigenvalues with
positive real parts represent relaxational eigenmodes which decay exponentially with
time. Therefore, if all other eigenvalues have strictly positive real parts, a stochastic
process with a finite configuration space approaches a well-defined stationary probability
distribution P∞(c) exponentially.

1.2. Equilibrium dynamics

Equilibrium statistical mechanics is based on the axiom that the underlying quantum-
mechanical laws are built in such a way that an isolated stochastic system in its
stationary state maximizes entropy. This means that it evolves through the accessible
configurations with the same probability, forming a microcanonical ensemble. In most
applications, however, the stochastic system is not isolated but coupled to an external
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heat bath. A heat bath is a surrounding environment consisting of many degrees of
freedom that exchanges energy with the system of interest. For example, in molecular
beam epitaxy the deposited particle interacts with the phonons of the substrate by an
exchange of energy, i.e., the substrate provides a thermal heat bath. Assuming that the
combination of system and heat bath maximizes entropy while conserving energy it is
easy to show that the stationary probability distribution Peq(c) is no longer uniform but
given by the Boltzmann ensemble

Peq(c) =
1

Z
exp(−E(c)/kBT ) , (4)

where T is the temperature of the heat bath and Z is the partition sum over all accessible
configurations. Therefore, in equilibrium statistical mechanics it is not necessary to solve
a partial differential equation, instead the stationary distribution is delivered for free.

Equilibrium models are fully defined by the accessible configurations c ∈ C and the
corresponding energies E(c). Although the Boltzmann ensemble renders the stationary
distribution for free it does not provide any information about relaxational modes.
Consequently, the dynamical rules for a given equilibrium system in terms of transition
rates are not unique. In fact, as the only requirement the stationary zero mode of
the Liouville operator has to reproduce the Boltzmann ensemble, which determines the
matrix elements of L only partially. This is the reason why the well-known Ising model
can be simulated on a computer by various dynamical algorithms, including heat bath,
Glauber, Metropolis, and Swendsen-Wang dynamics. All these dynamical processes
relax towards the same stationary state that reproduces the Boltzmann ensemble of the
Ising model. However, their dynamical properties can be quite different which plays an
important role with respect to critical slowing down in the vicinity of a phase transition.

Constructing dynamical rules that reproduce the stationary distribution of a given
equilibrium model, it is always possible to choose the transition rates in such a way that
they obey detailed balance, i.e.

Peq(c)wc→c′ = Peq(c
′)wc′→c . (5)

This means that the probability currents between pairs of configurations c and c′ cancel
each other, as sketched in the left panel of Fig. 1.

1.3. Non-equilibrium dynamics

Dynamical systems are said to be out of equilibrium if the microscopic processes violate
detailed balance. Roughly speaking, the term “non-equilibrium” refers to situations
where the probability currents between microstates do not vanish. For example, an
Glauber-Ising model that has not yet reached the stationary state violates detailed
balance and hence is out of equilibrium. But even systems in a stationary state can
be out of equilibrium. Let us, for example, consider a system with three configurations
A,B,C that hops clockwise by cyclic transition rates wA→B = wB→C = wC→A = 1 (see
right panel of Fig. 1). This process quickly approaches a stationary state with equal
probabilities Ps(A) = Ps(B) = Ps(C) = 1/3. Although this stationary distribution
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Figure 1. Detailed balance and non-equilibrium steady states. The figure sketches

a hypothetical system with three microstates A, B, C. In both cases the stationary

distribution function is Ps(A) = Ps(B) = Ps(C) = 1/3. Left: The transitions occur

at equal rates in all directions, hence the effective probability currents vanish and the

dynamics obeys detailed balance. Right: The transitions occur only clockwise, leading

to non-vanishing probability currents. Consequently, even the stationary state of the

system is out of equilibrium.

corresponds to a Boltzmann distribution with constant energy, the process violates the
condition of detailed balance and is therfore out of equilibrium.

On a more hand-waving level all systems subjected to external currents such as
external driving or supply of energy or particles are expected to be out of equilibrium.
For example, a running steam engine, although working in a stationary situation, needs
continuous supply of air, coal, and water, hence it is in principle impossible to establish
detailed balance. Nevertheless a steam engine is still close to equilibrium, meaning that
on certain scales the processes are almost thermalized so that the concepts of equilibrium
physics can still be applied.

In this lecture, we are primarily interested in systems far from equilibrium. To
this end we consider stochastic processes that violate detailed balance so strongly
that concepts of equilibrium statistical physics can no longer be applied, even in an
approximate sense. We are interested in the question whether stochastic processes far
from equilibrium can exhibit new phenomena that cannot be observed under equilibrium
conditions. This applies in particular to phase transitions far from equilibrium.

1.4. Non-equilibrium phase transitions

Particularly interesting in classical stochastic systems are situations in which the
microscopic degrees of freedom behave collectively over large scales [2,3], especially when
the system undergoes a continuous phase transition. In equilibrium statistical mechanics
the best known example is the order-disorder transition in the two-dimensional
Ising model, where the typical size of ordered domains diverges when the critical
temperature Tc is approached. It is well known that in second-order phase transition
at thermal equilibrium the emerging long-range correlations are fully specified by the
symmetry properties of the model under consideration and do not depend on details
of the microscopic interactions. This allows one to associate these transitions with
different universality classes. The notion of universality was originally introduced by
experimentalists in order to describe the observation that several apparently unrelated
physical systems are sometimes characterized by the same type of singular behavior
near the transition. Since then the concept of universality classes became a paradigm
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of statistical physics. As the number of such classes seems to be limited, the aim of
theoretical statistical mechanics would be to provide a complete classification scheme.
The most remarkable breakthrough in this direction was the application of conformal
field theory to equilibrium critical phenomena [4–6], leading to an extremely powerful
classification scheme of continuous phase transitions in two dimensions.

Continuous phase transitions far away from equilibrium are less well understood.
It turns out that the concept of universality, which has been very successful in the field
of equilibrium critical phenomena, can be applied to non-equilibrium phase transitions
as well. However, the universality classes of non-equilibrium critical phenomena are
expected to be even more diverse as they involve time as an extra degree of freedom
and are therefore governed by various symmetry properties of the evolution dynamics.
Obviously, there is a large variety of phenomenological non-equilibrium phase transitions
in Nature, ranging for example from morphological transitions of growing surfaces [7]
to traffic jams [8]. On the other hand, the experimental evidence for universality of
non-equilibrium phase transitions is still very poor, calling for intensified experimental
efforts.

One important class of non-equilibrium phase transitions, on which we will focus in
this lecture, occurs in models with so-called absorbing states, i.e., configurations that can
be reached by the dynamics but cannot be left. The most prominent universality class
of absorbing-state transitions is directed percolation (DP) [9]. This type of transition
occurs, for example, in models for the spreading of infectious diseases. Amazingly, DP
is one of very few critical phenomena which cannot be solved exactly in one spatial
dimension. Although DP is easy to define, its critical behavior is highly nontrivial.
This is probably one of the reasons why DP keeps theoretical physicists fascinated.

Moreover, these lecture notes discuss various other classes of non-equilibrium
phase transitions and give a short introduction to wetting far from equilibrium. The
presentation is based on various existing sources, in particular on the book by Marro
and Dickman [10] and the review articles by Kinzel [9], Grassberger [11], Ódor [12],
Lübeck [13], and myself [14]. The reader is also referred to a large number of research
articles for further reading.

2. Directed percolation

The probably most important class of non-equilibrium processes, which display a non-
trivial phase transition from a fluctuating phase into an absorbing state, is Directed

Percolation (DP). As will be discussed below, the DP class comprises a large variety of
models that share certain basic properties.

2.1. Directed bond percolation on a lattice

To start with let us first consider a specific model called directed bond percolation which
is often used as a simple model for water percolating through a porous medium. The
model is defined on a tilted square lattice whose sites represent the pores of the medium.
The pores are connected by small channels (bonds) which are open with probability p
and closed otherwise. As shown in Fig. 2, water injected into one of the pores will
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isotropic percolation directed percolation

Figure 2. Isotropic versus directed bond percolation. The figure shows two identical

realizations of open and closed bonds on a finite part of a tilted square lattice. A

spreading agent (red) is injected at the central site (blue circle). In the case of isotropic

percolation (left) the agent percolates through open bonds in any direction. Contrarily,

in the case of directed percolation, the agent is restricted to percolate along a preferred

direction, as indicated by the arrow.

percolate along open channels, giving rise to a percolation cluster of wetted pores whose
average size will depend on p.

There are two fundamentally different versions of percolation models. In isotropic

percolation the flow is undirected, i.e., the spreading agent (water) can flow in any
direction through open bonds (left panel of Fig. 2). A comprehensive introduction to
isotropic percolation is given in the textbook by Stauffer [15]. In the present lecture,
however, we are primarily interested in the case of directed percolation. Here the clusters
are directed, i.e., the water is restricted to flow along a preferred direction in space, as
indicated by the arrow in Fig. 2. In the context of porous media this preferred direction
may be interpreted as a gravitational driving force. Using the language of electronic
circuits DP may be realized as a random diode network (cf. Sect. 2.9).

The strict order of cause and effect in DP allows one to interpret the preferred
direction as a temporal coordinate. For example, in directed bond percolation, we may
enumerate horizontal rows of sites by an integer time index t (see Fig. 3). Instead of a
static model of directed connectivity, we shall from now on interpret DP as a dynamical
process which evolves in time. Denoting wetted sites as active and dry sites as inactive

the process starts with a certain initial configuration of active sites that can be chosen
freely. For example, in Fig. 3 the process starts with a single active seed at the origin.
As t increases the process evolves stochastically through a sequence of configurations
of active sites, also called states at time t. An important quantity, which characterizes
these intermediate states, is the total number of active sites N(t), as illustrated in Fig. 3.

Regarding directed percolation as a reaction-diffusion process the local transition
rules may be interpreted as follows. Each active site represents a particle A. If the
two subsequent bonds are both closed, the particle will have disappeared at the next
time step by a death process A → ∅ (see Fig. 4a). If only one of the bonds is open,
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Figure 3. Directed bond percolation. The process shown here starts with a single

active seed at the origin. It then evolves through a sequence of configurations along

horizontal lines (called states) which can be labeled by a time-like index t. An

important quantity to study would be the total number of active sites N(t) at time t.

a) b) c) d) e)

Figure 4. Interpretation of the dynamical rules of directed bond percolation as a

reaction-diffusion process: a) death process, b)-c) diffusion, d) offspring production,

and e) coagulation.

the particle diffuses stochastically to the left or to the right, as shown in Fig. 4b-4c.
Finally, if the two bonds are open the particles creates an offspring A → 2A (Fig. 4d).
However, it is important to note that each site in directed bond percolation can be either
active or inactive. In the particle language this means that each site can be occupied
by at most one particle. Consequently, if two particles happen to reach the same site,
they merge irreversibly forming a single one by coalescence 2A → A, as illustrated in
Fig. 4e. Summarizing these reactions, directed bond percolation can be interpreted as
a reaction-diffusion process which effectively follows the reaction scheme

A→ ∅ death process

A→ 2A offspring production (6)

2A→ A coagulation

combined with single-particle diffusion.

The dynamical interpretation in terms of particles is of course the natural language
for any algorithmic implementation of DP on a computer. As the configuration at time t
depends exclusively on the previous configuration at time t − 1 it is not necessary to
store the entire cluster in the memory, instead it suffices to keep track of the actual
configuration of active sites at a given time and to update this configuration in parallel
sweeps according to certain probabilistic rules. In the case of directed bond percolation,
one obtains a stochastic cellular automaton with certain update rules in which each
active site of the previous configuration activates its nearest neighbors of the actual
configuration with probability p. In fact, as shown in Fig. 5, a simple non-optimized



Non-equilibrium phase transitions 9
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//============== Simple C-code for directed percolation =============

#include <fstream.h>

using namespace std;

const int T=1000;                // number of rows

const int R=10000;                // number of runs

const double p=0.7;                // percolation probability

int N[T];                        // cumulative occupation number

//--- random number generator returning doubles between 0 and 1 -----

inline double rnd(void)        { return (double)rand()/0x7FFFFFFF; }

//------------ construct directed percolation cluster ---------------

void DP (void)  {

int t,i,s[T][T];                                 // static array

for (t=0;t<T;t++) for (i=0;i<=t;i++) s[t][i]=0;         // clear lattice

s[0][0]=1;                                          // place seed

// perform loop over all active sites:

for (t=0; t<T-1; t++) for (i=0; i<=t; i++) if (s[t][i]) {

        N[t]++;

        if (rnd()<p) s[t+1][i]=1;                // offspring right

        if (rnd()<p) s[t+1][i+1]=1;                // offspring left

        }

}

//-------- perform R runs and write average N(t) to disk -----------

int main (void) {

for (int t=0; t<T; t++) N[t]=0;                // reset N(t)

for (int r=0; r<R; r++) DP();                // perform R runs

ofstream os("N.dat");                        // write result to disk

for (int t=0; t<T-1; t++) os << t << "\t" << (double)N[t]/R << endl;

}

Figure 5. Simple non-optimized program in C for directed bond percolation. The

numerical results are shown below in Fig. 6.

C-code for directed bond percolation takes less than a page, and the core of the update
rules takes only a few lines.

2.2. Absorbing states and critical behavior

As only active sites at time t can activate sites at time t+ 1, the configuration without

active sites plays a special role. Obviously, such a state can be reached by the dynamics
but it cannot be left. In the literature such states are referred to as absorbing. Absorbing
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Figure 6. Typical DP clusters in 1+1 dimensions grown from a single seed below, at,

and above criticality.

states can be thought of as a trap: Once the system reaches the absorbing state it
becomes trapped and will stay there forever. As we will see below, a key feature of
directed percolation is the presence of a single absorbing state, usually represented by
the empty lattice.

The mere existence of an absorbing state demonstrates that DP is a dynamical
process far from thermal equilibrium. As explained in the Introduction, equilibrium
statistical mechanics deals with stationary equilibrium ensembles that can be generated
by a dynamics obeying detailed balance, meaning that probability currents between pairs
of sites cancel each other. As the absorbing state can only be reached but not be left,
there is always a non-zero current of probability into the absorbing state that violates
detailed balance. Consequently the temporal evolution before reaching the absorbing
state cannot be described in terms of thermodynamic ensembles, proving that DP is a
non-equilibrium process.

The enormous theoretical interest in DP – more than 800 articles refer to this class of
models – is related to the fact that DP displays a non-equilibrium phase transition from
a fluctuating phase into the absorbing state controlled by the percolation probability p.
The existence of such a transition is quite plausible since offspring production and
particle death compete with each other. As will be discussed below, phase transitions
into absorbing states can be characterized by certain universal properties which are
independent of specific details of the microscopic dynamics. In fact, the term ‘directed
percolation’ does not stand for a particular model, rather it denotes a whole universality
class of models which display the same type of critical behavior at the phase transition.
The situation is similar as in equilibrium statistical mechanics, where for example the
Ising universality class comprises a large variety of different models. In fact, DP is
probably as fundamental in non-equilibrium statistical physics as the Ising model in
equilibrium statistical mechanics.

In DP the phase transition takes place at a certain well-defined critical percolation
probability pc. As illustrated in Fig. 6 the behavior on both sides of pc is very different.
In the subcritical regime p < pc any cluster generated from a single seed has a finite
life time and thus a finite mass. Contrarily, in the supercritical regime p > pc there
is a finite probability that the generated cluster extends to infinity, spreading roughly
within a cone whose opening angle depends on p−pc. Finally, at criticality finite clusters
of all sizes are generated. These clusters are sparse and remind of self-similar fractal
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Figure 7. Directed bond percolation: Number of particles N(t) as a function of time

for different values of the percolation probability p. The critical point is characterized

by an asymptotic power law behavior. The inset demonstrates the crossover to an

exponential decay in the subcritical phase for p = 0.6.

objects. As we will see, a hallmark of such a scale-free behavior is a power-law behavior
of various quantities.

The precise value of the percolation threshold pc is non-universal (i.e., it depends
on the specific model) and can only be determined numerically. For example, in
the case of directed bond percolation in 1+1 dimensions, the best estimate is pc =
0.644700185(5) [16]. Unlike isotropic bond percolation in two dimensions, where the
critical value is exactly given by piso

c = 1/2, an analytical expression for the critical
threshold of DP in finite dimensions is not yet known. This seems to be related to the
fact that DP is a non-integrable process. It is in fact amazing that so far, in spite of its
simplicity and the enormous effort by many scientists, DP resisted all attempts to be
solved exactly, even in 1+1 dimensions.

In order to describe the phase transition quantatively an appropriate order
parameter is needed. For simulations starting from a single active seed a suitable order
parameter is the average number of particles 〈N(t)〉 at time t, where 〈. . .〉 denotes the
average over many independent realizations of randomness (called runs in the numerical
jargon). For example, the program shown in Fig. 5 averages this quantity over 10.000
runs and stores the result in a file that can be viewed by a graphical tool such as
xmgrace. As shown in Fig. 7, there are three different cases:

• For p < pc the average number of active sites first increases and then decreases
rapidly. As demonstrated in the inset, this decrease is in fact exponential. Obvi-
ously, the typical crossover time, where exponential decay starts, depends on the
distance from criticality pc − p.
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• At criticality the average number of active sites increases according to a power law
〈N(t)〉 ∼ tθ. A standard regression of the data gives the exponent θ ≃ 0.302, shown
in the figure as a thin dashed line. As can be seen, there are deviations for low t,
i.e., the process approaches a power-law only asymptotically.

• In the supercritical regime p > pc the slow increase of 〈N(t)〉 crosses over to a fast
linear increase with time. Again the crossover time depends on the distance from
criticality p− pc.

The properties of 〈N(t)〉 above and below criticality can be used to determine the
critical threshold numerically. This iterative procedure works as follows: Starting with
a moderate simulation time it is easy to specify a lower and an upper bound for pc by
hand, e.g., 0.64 < pc < 0.65 in the case of directed bond percolation. This interval
is then divided into two equal parts and the process is simulated in between, e.g., at
p = 0.645. In order to find out whether this value is sub- or supercritical one has to
check deviations for large t from a straight line in a double logarithmic plot. If the curve
veers down (up) the procedure is iterated using the upper (lower) interval. In detecting
the sign of curvature the human eye is quite reliable but it is also possible to recognize it
automatically. If there is no obvious deviation from a straight line the simulation time
and the number of runs has to be increased appropriately.

Warning: Determining the numerical error for the estimate of a critical exponent
never use the statistical χ2-error of a standard regression! For example, for the data
produced by the minimal program discussed above, a linear regression by xmgrace would
give the result θ = 0.3017(2). However, the estimate in the literature θ = 0.313686(8)
lies clearly outside these error margins, meaning that the actual error must be much
higher. A reliable estimate of the error can be obtained by comparing the slopes over
the last decade of simulations performed at the upper and the lower bound of pc.

In principle the accuracy of this method is limited only by the available CPU time.
We note, however, that this standard method assumes a clean asymptotic power law
scaling, which for DP is indeed the case. However, in some cases the power law may
be superposed by slowly varying deviations, e.g. logarithmic corrections, so that the
plotted data at criticality is actually not straight but slightly curved. With the method
outlined above one is then tempted to ‘compensate’ this curvature by tuning the control
parameter, leading to unknown systematic errors. Recently this happened, for example,
in the case of the diffusive pair contact process, as will be described in Sect. 3.4.

2.3. The Domany-Kinzel cellular automaton

An important model for DP, which includes directed bond percolation as a special case, is
the celebrated Domany-Kinzel model [17,18]. The Domany-Kinzel model is a stochastic
cellular automaton defined on a diagonal square lattice which evolves by parallel updates
according to certain conditional transition probabilities P [si(t+1)|si−1(t), si+1(t)], where
si(t) ∈ {0, 1} denotes the occupancy of site i at time t. These probabilities depend on
two parameters p1, p2 and are defined by

P [1|0, 0] = 0 ,
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Figure 8. Phase diagram of the Domany-Kinzel model.

P [1|0, 1] = P [1|1, 0] = p1 , (7)

P [1|1, 1] = p2 ,

with P [0|·, ·] = 1 − P [1|·, ·]. On a computer the Domany-Kinzel model can be
implemented as follows. To determine the state si(t) of site i at time t we generate
for each site a random number z ∈ (0, 1) from a flat distribution and set

si(t+ 1) =







1 if si−1(t) 6= si+1(t) and zi(t) < p1 ,

1 if si−1(t) = si+1(t) = 1 and zi(t) < p2 ,

0 otherwise .

(8)

This means that a site is activated with probability p2 if the two nearest neighbors at the
previous time step were both active while it is activated with probability p1 if only one
of them was active. Thus the model depends on two percolation probabilities p1 and p2,
giving rise to the two-dimensional phase diagram shown in Fig. 8. The active and the
inactive phase are now separated by a line of phase transitions. This line includes several
special cases. For example, the previously discussed case of directed bond percolation
corresponds to the choice p1 = p and p2 = p(2−p). Another special case is directed site
percolation [9], corresponding to the choice p1 = p2 = p. In this case all bonds are open
but sites are permeable with probability p and blocked otherwise. Finally, the special
case p2 = 0 is a stochastic generalization of the rule ‘W18’ of Wolfram’s classification
scheme of cellular automata [19]. Numerical estimates for the corresponding critical
parameters are listed in Table 1.

There is strong numerical evidence that the critical behavior along the whole
phase transition line (except for its upper terminal point) is that of DP, meaning that
the transitions always exhibit the same type of long-range correlations. The short-
range correlations, however, are non-universal and may change when moving along the
phase transition line. They may even change the visual appearance of the clusters,
as illustrated in Fig. 9, where four typical snapshots of critical clusters are compared.
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transition point p1,c p2,c Ref.

Wolfram rule 18 0.801(2) 0 [20]

site DP 0.70548515(20) 0.70548515(20) [16]

bond DP 0.644700185(5) 0.873762040(3) [16]

compact DP 1/2 1 [9]

Table 1. Special transition points in the (1+1)-dimensional Domany-Kinzel model.

site DP bond DP compact DPWolfram 18

Figure 9. Domany-Kinzel model: Critical cluster generated from a single active seed

at different points along the phase transition line (see text).

Although the large-scale structure of the clusters in the first three cases is roughly the
same, the microscoppic texture seems to become bolder as we move up along the phase
transition line. As shown in Ref. [14], this visual impression can be traced back to an
increase of the mean size of active islands.

Approaching the upper terminal point the mean size of active islands diverges and
the cluster becomes compact. For this reason this special point is usually referred to
as compact directed percolation. However, this nomenclature may be misleading for
the following reasons. The exceptional behavior at this point of is due to an additional
symmetry between active and inactive sites along the upper border of the phase diagram
at p2 = 1. Here the DK model has two symmetric absorbing states, namely, the empty
and the fully occupied lattice. For this reason the transition does no longer belong to
the universality class of directed percolation, instead it becomes equivalent to the (1+1)-
dimensional voter model [2, 21] or the Glauber-Ising model at zero temperature. Since
the dynamic rules are invariant under the replacement p1 ↔ 1 − p1, the corresponding
transition point is located at p1 = 1/2.

The Domany-Kinzel model can be generalized easily to higher spatial dimensions.
For example, Fig. 10 shows a possible cluster in 2+1-dimensional directed bond
percolation. Generally, in the d+1-dimensional Domany-Kinzel model the activation
probability of site i at time t+ 1 depends on the number ni(t) =

∑

j∈<i> sj(t) of active
nearest neighbors at time t, i.e. the conditional probabilities

P [1|0] = 0 ,

P [1|n] = pn , (1 ≤ n ≤ 2d) (9)

are controlled by 2d parameters p1, . . . , p2d. The special case of directed bond percolation
corresponds to the choice pn = 1−(1−p)n while for equal parameters pn = p one obtains
directed site percolation in d+1 dimensions.
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t

Figure 10. Lattice geometry of directed bond percolation in 2+1 dimensions. The

red lines represent a possible cluster generated at the origin.

2.4. The contact process

Another important model for directed percolation, which is popular in mathematical
communities, is the contact process. The contact process was originally introduced
by Harris [22] as a model for epidemic spreading (see Sect. 4). It is defined on a
d-dimensional square lattice whose sites can be either active (si(t) = 1) or inactive
(si(t) = 0). In contrast to the Domany-Kinzel model, which is a stochastic cellular
automaton with parallel updates, the contact process evolves by asynchronous updates,
i.e., the three elementary processes (offspring production, on-site removal and diffusive
moves) occur spontaneously at certain rates. Although the microscopic dynamics differs
significantly from the Domany-Kinzel model, the contact process displays the same
type of critical behavior at the phase transition. In fact, both models belong to the
universality class of DP.

On a computer the d+1-dimensional contact process can be implemented as follows.
For each attempted update a site i is selected at random. Depending on its state si(t)
and the number of active neighbors ni(t) =

∑

j∈<i> sj(t) a new value si(t+ dt) = 0, 1 is
assigned according to certain transition rates w[si(t) → si(t+dt), ni(t)]. In the standard
contact process these rates are defined by

w[0 → 1, n] = λn/2d , (10)

w[1 → 0, n] = 1 . (11)

Here the parameter λ plays the same role as the percolation probability in directed
bond percolation. Its critical value depends on the dimension d. For example, in 1+1
dimensions the best-known estimate is λc ≃ 3.29785(8) [23].

As demonstrated in Ref. [14] the evolution of the contact process can be described
in terms of a master equation whose Liouville operator L can be constructed explicitely
on a finite lattice. Diagonalizing this operator numerically one obtains a spectrum of
relaxational modes with at least one zero mode which represents the absorbing state.
In the limit of large lattices the critical threshold λc is usually the point from where on
the first gap in the spectrum of L vanishes.
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2.5. The critical exponents β, β ′, ν⊥, and ν‖

In equilibrium statistical physics, continuous phase transitions as the one in the Ising
model can be described in terms of a phenomenological scaling theory. For example,
the spontaneous magnetization M in the ordered phase vanishes as |M | ∼ (Tc − T )β as
the critical point is approached. Here β is a universal critical exponent, i.e. its value is
independent of the specific realization of the model. Similarly, the correlation length ξ
diverges in as ξ ∼ |T −Tc|−ν for T → Tc with another universal exponent ν. The critical
point itself is characterized by the absence of a macroscopic length scale so that the
system is invariant under suitable scaling transformations (see below).

In directed percolation and other non-equilibrium phase transitions into absorbing
states the situation is very similar. However, as non-equilibrium system involves time
which is different from space in character, there are now two different correlation lengths,
namely, a spatial correlation length ξ⊥ and a temporal correlation length ξ‖ with two
different associated exponents ν⊥ and ν‖. Their ratio z = ν‖/ν⊥ is called dynamical

exponent as it relates spatial and temporal scales at criticality.

What is the analogon of the magnetization in DP? As shown above, in absorbing
phase transitions the choice of the order parameter depends on the initial configuration.
If homogeneous initial conditions are used, the appropriate order parameter is the
density of active sites at time t

ρ(t) = lim
L→∞

1

L

∑

i

si(t) . (12)

Here the density is defined as a spatial average in the limit of large system sizes L→ ∞.
Alternatively, for a finite system with periodic boundary conditions we may express the
density as

ρ(t) = 〈si(t)〉 , (13)

where 〈. . .〉 denotes the ensemble average over many realizations of randomness. Because
of translational invariance the index i is arbitrary. Finally, if the process starts with a
single seed, possible order parameters are the average mass of the cluster

N(t) = 〈
∑

i

si(t)〉 (14)

and the survival probability

P (t) = 〈1 −
∏

i

(1 − si(t))〉 . (15)

These quantities allow us to define the four standard exponents

ρ(∞) ∼ (p− pc)
β , (16)

P (∞) ∼ (p− pc)
β′

, (17)

ξ⊥ ∼ |p− pc|−ν⊥ , (18)

ξ‖ ∼ |p− pc|−ν‖ . (19)
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The necessity of two different exponents β and β ′ can be explained in the framework of
a field-theoretic treatment, where these exponents are associated with particle creation
and annihilation operators, respectively. In DP, however, a special symmetry, called
rapidity reversal symmetry, ensures that β = β ′. This symmetry can be proven most
easily in the case of directed bond percolation, where the density ρ(t) starting from a
fully occupied lattice and the survival probability P (t) for clusters grown from a seed are
exactly equal for all t. Hence both quantities scale identically and the two corresponding
exponents have to be equal. This is the reason why DP is characterized by only three
instead of four critical exponents.

The cluster mass N(t) ∼ tθ scales algebraically as well. The associated exponent,
however, is not independent, instead it can be expressed in terms of the so-called
generalized hyperscaling relation [24]

θ =
dν⊥ − β − β ′

ν‖
. (20)

In order to determine the critical point of a given model by numerical methods, N(t)
turned out to be one of the most sensitive quantities.

2.6. Scaling laws

Starting point of a phenomenological scaling theory for absorbing phase transitions is
the assumption that the macroscopic properties of the system close to the critical point
are invariant under scaling transformations of the form

∆ → a∆, x → a−ν⊥x, t→ a−ν‖t, ρ→ aβρ, P → aβ
′

P, (21)

where a > 0 is some scaling factor and ∆ = p− pc denotes the distance from criticality.
Scaling invariance strongly restricts the form of functions. For example, let us consider
the decay of the average density ρ(t) at the critical point starting with a fully occupied
lattice. This quantity has to be invariant under rescaling, hence ρ(t) = aβρ(t a−ν‖).
Choosing a such that t a−ν‖ = 1 we arrive at ρ(t) = t−β/ν‖ρ(1), hence

ρ(t) ∼ t−δ , δ = β/ν‖ . (22)

Similarly, starting from an initial seed, the survival probability Ps(t) decays as

Ps(t) ∼ t−δ
′

, δ′ = β ′/ν‖ (23)

with δ = δ′ in the case of DP.

In an off-critical finite-size system, the density ρ(t,∆, L) and the survival probability
P (t,∆, L) depend on three parameters. By a similar calculation it is easy to show
that scaling invariance always reduces the number of parameters by 1, expressing the
quantity of interest by a leading power law times a scaling function that depends on
scaling-invariant arguments. Such expressions are called scaling forms. For the density
and the survival probability these scaling forms read

ρ(t,∆, L) ∼ t−β/ν‖ f(∆ t1/ν‖ , td/z/L) , (24)

P (t,∆, L) ∼ t−β
′/ν‖ f ′(∆ t1/ν‖ , td/z/L) . (25)
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critical MF d = 1 d = 2 d = 3 d = 4 − ǫ

β 1 0.276486(8) 0.584(4) 0.81(1) 1 − ǫ/6 − 0.01128 ǫ2

ν⊥ 1/2 1.096854(4) 0.734(4) 0.581(5) 1/2 + ǫ/16 + 0.02110 ǫ2

ν‖ 1 1.733847(6) 1.295(6) 1.105(5) 1 + ǫ/12 + 0.02238 ǫ2

z 2 1.580745(10) 1.76(3) 1.90(1) 2 − ǫ/12− 0.02921 ǫ2

δ 1 0.159464(6) 0.451 0.73 1 − ǫ/4 − 0.01283 ǫ2

θ 0 0.313686(8) 0.230 0.12 ǫ/12 + 0.03751 ǫ2

Table 2. Critical exponents of directed percolation obtained by mean field (MF),

numerical, and field-theoretical methods.

2.7. Universality

As outlined in the introduction, the working hypothesis in the field of continuous non-
equilibrium phase transitions is the notion of universality. This concept expresses the
expectation that the critical behavior of such transitions can be associated with a finite
set of possible universality classes, each corresponding to a certain type of underlying
field theory. The field-theoretic action involves certain relevant operators whose form is
usually determined by the symmetry properties of the process, while other details of the
microscopic dynamics lead to contributions which are irrelevant in the field-theoretic
sense. This explains why various different models may belong to the same universality
class.

In particular the DP class – the “Ising” class of non-equilibrium statistical physics –
is extremely robust with respect to the microscopic dynamic rules. The large variety and
robustness of DP models led Janssen and Grassberger to the conjecture that a model
should belong to the DP universality class if the following conditions hold [25, 26]:

(i) The model displays a continuous phase transition from a fluctuating active phase
into a unique absorbing state.

(ii) The transition is characterized by a positive one-component order parameter.

(iii) The dynamic rules involve only short-range processes.

(iv) The system has no unconventional attributes such as additional symmetries or
quenched randomness.

Although this conjecture has not yet been proven rigorously, it is highly supported by
numerical evidence. In fact, DP seems to be even more general and has been identified
even in systems that violate some of the four conditions.

The universality classes can be characterized in terms of their critical exponents
and scaling functions. Hence in order to identify a certain universality class, a precise
estimation of the critical exponents is an important numerical task. In the case of
DP, the numerical estimates suggest that the critical exponents are given by irrational

numbers rather than simple rational values. In addition, scaling functions (such as f
and f ′ in Eq. (24)), which were ignored in the literature for long time, provide a wealth
of useful information, as shown e.g. in a recent review by Lübeck [13].
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2.8. Langevin equation

On a coarse-grained level DP is often described in terms of a phenomenological Langevin
equation with a field-dependent noise. This Langevin equation can be derived rigorously
from the master equation of the contact process [25] and reads

∂tρ(x, t) = aρ(x, t) − λρ2(x, t) +D∇2ρ(x, t) + ξ(x, t) . (26)

Here ξ(x, t) is a density-dependent Gaussian noise field with the correlations

〈ξ(x, t)〉 = 0 , (27)

〈ξ(x, t)ξ(x′, t′)〉 = Γ ρ(x, t) δd(x − x′) δ(t− t′) . (28)

Since the amplitude of ξ(x, t) is proportional to
√

ρ(x, t), the absorbing state ρ(x, t) = 0
does not fluctuate. The square-root behavior is related to the fact that the noise
describes density fluctuations on a coarse-grained scale, which can be viewed as the
sum of individual noise contributions generated by each particle averaged over some
mesoscopic box size. According to the central limit theorem, if the number of particles in
this box is sufficiently high, ξ(x, t) approaches a Gaussian distribution with an amplitude
proportional to the square root of the number of active sites in the box.

Applying the scaling transformation (21) to Eqs. (26)-(27) a simple dimensional
analysis gives the mean field critical point ac = 0 and the mean field exponents

βMF = β ′MF
= 1, νMF

⊥ = 1/2, νMF
‖ = 1. (29)

In this situation the noise is irrelevant in d > 4, marginal in d = 4, and relevant in
d < 4 dimensions. This means that dc = 4 is the upper critical dimension of directed
percolation above which the mean field exponents are correct. Below dc the exponents
can be determined by a renormalization group study of the corresponding field theory.
A comprehensive introduction to the field theory of DP and other universality classes is
beyond the scope of these lecture notes, the interested reader is referred to very recent
and excellent review articles by Janssen, Täuber, Howard, and Lee [27, 28]. We note
that Eq. (26) is the minimal Langevin equation needed to describe DP. It may also
include higher order terms such as ρ3(x, t), ∇4ρ(x, t), or higher-order contributions of
the noise, but in the field-theoretic sense these contributions turn out to be irrelevant
under renormalization group transformations, explaining the robustness of DP.

2.9. Multifractal properties of currents on directed percolation clusters

So far we have seen that the critical behavior of DP and other absorbing phase
transitions can be described in terms of scaling laws that involve three independent
critical exponents β, ν⊥, and ν‖. This type of scaling is usually referred to as simple

scaling, as opposed to multiscaling, where a whole spectrum of exponents exists. For
example, in DP at criticality starting with a homogeneous initial state any integral
power ρn of the order parameter ρ scales in the same way, i.e.

ρn(t) ∼ t−δ n = 1, 2, 3, . . . . (30)
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Figure 11. Electric current running through a random resistor-diode network at the

percolation threshold from one point to the other. The right panel shows a particular

realization. The color and thickness of the line represent the intensity of the current.

Let us now consider an electric current running on a directed percolation cluster
according to Kirchhoff’s laws, interpreting the cluster as a random resistor-diode
network. By introducing such a current the theory is extended by an additional physical
concept. In fact, even though the DP cluster itself is known to be characterized by simple
scaling laws, a current running on it turns out to be distributed in a multifractal manner.
This phenomenon was first discovered in the case of isotropic percolation [29, 30] and
then confirmed for DP [31,32].

As shown in Fig. 11, in directed bond percolation at criticality an electric current I
running from one point to the other is characterized by a non-trivial distribution of
currents. The multifractal structure of this current distribution can be probed by
studying the moments

Mℓ :=
∑

b

(Ib/I)
ℓ ℓ = 0, 1, 2, . . . , (31)

where the sum runs over all bonds b that transport a non-vanishing current Ib > 0.
For example, M0 is just the number of conducting bonds while M1 is essentially the
total resistance between the two points. M2 is the second cumulant of the resistance
fluctuations and can be considered as a measure of the noise in a given realization.
Finally, M∞ is the number of so-called red bonds that carry the full current I. The
quantity Mℓ is found to scale as a power law

Mℓ(t) ∼ tψℓ/ν‖ . (32)

In the case of simple scaling, the exponents ψℓ would depend linearly on ℓ. In the
present case, however, a non-linear dependence is found both by field-theoretic as well
as numerical methods (see Ref. [32]). This proves that electric currents running on DP
clusters have multifractal properties.

Again it should be emphasized that multifractality is not a property of DP itself,
rather it emerges as a new feature whenever an additional process, here the transport
of electric currents, is confined to live on the critical clusters of DP.



Non-equilibrium phase transitions 21

2.10. Characterizing non-equilibrium transition by Yang-Lee zeroes in the complex

plane

In equilibrium statistical mechanics a large variety of continuous phase transitions has
been analyzed by studying the distribution of so-called Yang-Lee zeros [33–35]. To
determine these zeros the partition sum of a (finite) equilibrium system is expressed as
a polynomial of the control parameter, which is usually a function of temperature. E.g.,
for the Ising model the zeros of this polynomial lie on a circle in the complex plane and
heckle the real line from both sides in the vicinity of the phase transition as the system
size increases. This explains why the analytic behavior in finite system crosses over to
a non-analytic behavior at the transition point in the thermodynamic limit.

Recently, it has been shown that the concept of Yang and Lee can also be applied
to non-equilibrium systems [36], including DP [37]. To this end one has to consider the
order parameter in a finite percolation tree as a function of the percolation probability p
in the complex plane. This can be done by studying the survival probability P (t) (see
Eq. (15)), which is defined as the probability that a cluster generated in a single site at
time t = 0 survives at least up to time t. In fact, the partition sum of an equilibrium
system and the survival probability of DP are similar in many respects. They both
are positive in the physically accessible regime and can be expressed as polynomials in
finite systems. As the system size tends to infinity, both functions exhibit a non-analytic
behavior at the phase transition as the Yang-Lee zeros in the complex plane approach
the real line.

In directed bond percolation the survival probability is given by the sum over the
weights of all possible configurations of bonds, where each conducting bond contributes
to the weight with a factor p, while each non-conducting bond contributes with a factor
1−p. As shown in Ref [37], the polynomial for the survival probability can be expressed
as a sum over all cluster configurations c reaching the horizontal row at time t. The
polynomial is of the form

P (t) =
∑

c

pn(1 − p)m , (33)

where n denotes the number of bonds while m is the number of bonds belonging to its
cluster’s hull. Summing up all weights in Eq. (33), one obtains a polynomial of degree
t2 + t. For example, the first few polynomials are given by

P (0) = 1 (34)

P (1) = 2p− p2

P (2) = 4p2 − 2p3 − 4p4 + 4p5 − p6

P (3) = 8p3 − 4p4 − 10p5 − 3p6 + 18p7 + 5p8 − 30p9 + 24p10 − 8p11 + p12

P (4) = 16p4 − 8p5 − 24p6 − 8p7 + 6p8 + 84p9 − 29p10 − 62p11 − 120p12

+244p13 + 75p14 − 470p15 + 495p16 − 268p17 + 83p18 − 14p19 + p20

As t increases, the number of cluster configurations grows rapidly, leading to complicated
polynomials with very large coefficients. The distribution of zeros in the complex
plane for t = 15 is shown in Fig. 12. As can be seen, the distribution reminds of a
fractal, perhaps being a signature of the non-integrable nature of DP. As expected, the
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Figure 12. Distribution of Yang-Lee zeros of the polynomial P (15) in the complex

plane. The transition point is marked by an arrow.

zeros approach the phase transition point from above and below. Their distance to the
transition point is found to scale as t−1/ν‖ in agreement with basic scaling arguments.

3. Other classes of absorbing phase transitions

So far we discussed directed percolation as the most important class of non-equilibrium
phase transitions into absorbing states. Because of the robustness of DP it is interesting
to search for other universality classes. The ultimate goal would be to set up a table of
possible non-trivial universality classes from active phases into absorbing states.

Although various exceptions from DP have been identified, the number of firmly
established universality classes is still small. A recent summary of the status quo can
be found in Refs. [12,13]. In these lecture notes, however, we will only address the most
important classes with local interactions.

3.1. Parity-conserving particle processes

The parity-conserving (PC) universality class comprises phase transitions that occur in
reaction-diffusion processes of the form

A→ (n+ 1)A

2A→ ∅ (35)

(36)

combined with single-particle diffusion, where the number of offspring n is assumed
to be even. As an essential feature, these processes conserve the number of particles
modulo 2. A particularly simple model in this class with n = 2 was proposed by Zhong
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Glauber−Ising model at T=0 Classical voter model

Figure 13. Coarsening of a random initial state in the Glauber-Ising model at zero

temperature compared to the coarsening in the classical voter model.

and ben-Avraham [38]. The estimated critical exponents

β = β ′ = 0.92(2) , ν‖ = 3.22(6) , ν⊥ = 1.83(3) (37)

differ significantly from those of DP, establishing PC transitions as an independent
universality class. The actual values of δ and θ depend on the initial condition. If the
process starts with a single particle, it will never stop because of parity conservation,
hence δ = 0, i.e. the usual relation δ = β/ν‖ does no longer hold. However, if it starts
with two particles, the roles of δ and θ are exchanged, i.e. θ = 0. The theoretical reasons
for this exchange are not yet fully understood.

The relaxational properties in the subcritical phase differ significantly from the
standard DP behavior. While the particle density in DP models decays exponentially
as ρ(t) ∼ e−t/ξ‖ , in PC models it decays algebraically since the decay is governed by the
annihilation process 2A→ ∅.

A systematic field theory for PC models can be found in Refs. [39, 40], confirming
the existence of the annihilation fixed point in the inactive phase. However, the
field-theoretic treatment at criticality is extremely difficult as there are two critical
dimensions: dc = 2, above which mean-field theory applies, and d′c ≈ 4/3, where for
d > d′c (d < d′c) the branching process is relevant (irrelevant) at the annihilation fixed
point. Therefore, the physically interesting spatial dimension d = 1 cannot be accessed
by a controlled ǫ-expansion down from upper critical dimension dc = 2.

3.2. The voter universality class

Order-disorder transition in models with a Z2-symmetry which are driven by interfacial

noise belong to the so-called voter universality class [21]. As will be explained below,
the voter class and the parity conserving class are identical in one spatial dimension but
different in higher dimensions.

To understand the physical mechanism that generates the phase transition in
the voter model, let us first discuss the difference between interfacial and bulk noise.
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Consider for example the Glauber-Ising model in two spatial dimensions at T = 0. This
model has two Z2-symmetric absorbing states, namely, the two fully ordered states.
Starting with a random initial configuration one observes a coarsening process forming
odered domains whose size grows as

√
t. In the Ising model at T = 0 domain growth is

curvature-driven, leading to an effective surface tension of the domain walls. In fact, as
shown in Fig. 13 the domain walls produced by the Glauber-Ising model appear to be
smooth and indeed the density of domain walls is found to decay as 1/

√
t. Increasing

temperature occasional spin flips occur, leading to the formation of small minority
islands inside the existing domains. For small temperature the influence of surface
tension is strong enough to eliminate these minority islands, stabilizing the ordered
phase. However, increasing T above a certain critical threshold Tc this mechanism
breaks down, leading to the well-known order-disorder phase transition in the Ising
model. Thus, from the perspective of a dynamical process, the Ising transition results
from a competition between surface tension of domain walls and bulk noise.

Let us now compare the Glauber-Ising model with the classical voter model in two
spatial dimensions. The classical voter model [2] is a caricatural process in which sites
(voters) on a square lattice adopt the opinion of a randomly-chosen neighbor. As the
Ising model, the voter model has two symmetric absorbing states. Moreover, an initially
disordered state coarsens. However, as shown in the right panel of Fig. 13, already the
visual appearance is very different. In fact, in the voter model the domain sizes are
found to be distributed over the whole range between 1 and

√
t. Moreover, in contrast

to the Glauber-Ising model, the density of domain walls decays only logarithmically
as 1/ ln t. This marginality of the voter model is usually attributed to the exceptional
character of its analytic properties [41–43] and may be interpreted physically as the
absence of surface tension.

In the voter model even very small thermal bulk noise would immediately lead to a
disordered state. However, adding interfacial noise one observes a non-trivial continuous
phase transition at a finite value of the noise amplitude. Unlike bulk noise, which flips
spins everywhere inside the ordered domains, interfacial noise restricts spin flips to sites
in the vicinity of domain walls.

Recently Al Hammal et al [44] introduced a Langevin equation describing voter
transitions. It is given by

∂

∂t
ρ = (aρ− bρ3)(1 − ρ2) +D∇2ρ+ σ

√

1 − ρ2ξ , (38)

where ξ is a Gaussian noise with constant amplitude. For b > 0 this equation is found
to exhibit separate Ising and DP transitions, while for b ≤ 0 a genuine voter transition
is observed. With these new results the voter universality class is now on a much firmer
basis than before.

In one spatial dimension, kinks between domain walls can be interpreted as
particles. Here interfacial noise between two domains amounts to generating pairs of
additional domain walls nearby. This process, by its very definition, conserves parity and
can be interpreted as offspring production A → 3A, 5A, . . . while pairwise coalescence
of domain walls corresponds to particle annihilation 2A → ∅. For this reason the
voter class and the parity-conserving class coincide in one spatial dimension. However,
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their behavior in higher dimensions, in particular the corresponding field theories, are
expected to be different. Loosely speaking, the parity-conserving class deals with the
dynamics of zero-dimensional objects (particles), while in the voter class the objects of
intererst are d-1-dimensional hypermanifolds (domain walls).

3.3. Absorbing phase transitions with a conserved field

According to the conjecture by Janssen and Grassberger (cf. Sect. 2.7), non-DP
behavior is expected if the dynamics is constrained by additional conservation laws. For
example, as shown in the previous subsections, parity conservation or a Z2-symmetry
may lead to different universality classes. Let us now consider phase transitions in
particle processes in which the total number of particles is conserved. According to an
idea by Rossi et al [45] this leads to a different universality class of phase transitions
which is characterized by an effective coupling of the process to a non-diffusive conserved
field. Models in this class have infinitely many absorbing states and are related to certain
models of self-organized criticality (for a recent review see Ref. [13]).

As an example let us consider the conserved threshold transfer process (CTTP).
In this model each lattice site can be vacant or occupied by either one or two particles.
Empty and single occupied sites are considered as inactive while double occupied sites
are regarded as active. According to the dynamical rules each active site attempts to
move the two particles randomly to neighboring sites, provided that these target sites
are inactive. By definition of these rules, the total number of particles is conserved.
Clearly, it is the background of solitary particles that serves as a conserved field to
which the dynamics of active sites is coupled.

In d ≥ 2 spatial dimensions this model shows the same critical behavior as the
Manna sand pile model [46]. The corresponding critical exponents in d = 2 dimensions
were estimated by [13]

β = 0.639(9) , β ′ = 0.624(29) , ν⊥ = 0.799(14) , ν‖ = 1.225(29). (39)

Obviously, this set of exponents differs from those of all other classes discussed above.
In one spatial dimension the situation is more complicated because of a split of the
CTTP and Manna universality classes, as described in detail in Ref. [13]

3.4. The diffusive pair contact process

Among the known transitions into absorbing states, the transition occurring in the so-
called contact process with diffusion (PCPD) is probably the most puzzling one (see
Ref. [47] for a recent review). The PCPD is a reaction-diffusion process of particles
which react spontaneously whenever two of them come into contact. In its simplest
version the PCPD involves two competing reactions, namely

fission: 2A→ 3A ,

annihilation: 2A→ ∅ .
In addition individual particles are allowed to diffuse. Moreover, there is an additional
mechanism such that the particle density cannot diverge. In models with at most one
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particle per site this mechanism is incorporated automatically.

The PCPD displays a non-equilibrium phase transition caused by the competition of
fission and annihilation. In the active phase, the fission process dominates, maintaining
a fluctuating steady-state, while in the subcritical phase the annihilation process
dominates so that the density of particles decreases continuously until the system reaches
one of the absorbing states. The PCPD has actually two absorbing states, namely, the
empty lattice and a homogeneous state with a single diffusing particle.

The pair-contact process with diffusion was already suggested in 1982 by
Grassberger [48], who expected a critical behavior “distinctly different” from DP. Eight
years ago the problem was rediscovered by Howard and Täuber [49], who proposed a
bosonic field-theory for the one-dimensional PCPD. In this theory the particle density
is unrestricted and thus diverges in the active phase. The first quantitative study of
a restricted PCPD by Carlon et al [50] using DMRG techniques led to controversial
results and released a still ongoing debate concerning the asymptotic critical behavior of
the 1+1-dimensional PCPD at the transition. Currently the main viewpoints are that
the PCPD

• represents a new universality class with well-defined critical exponents [51],

• represents two different universality classes depending on the diffusion rate [52,53]
and/or the number of space dimensions [54],

• can be interpreted as a cyclically coupled DP and annihilation process [55],

• is a marginally perturbed DP process with continuously varying exponents [56],

• may have exponents depending continuously on the diffusion constant [57],

• may cross over to DP after very long time [58, 59], and

• is perhaps related to the problem of non-equilibrium wetting in 1+1 dimensions [60].

Personally I am in favor of the conjecture that the PCPD in 1+1 dimensions belongs
to the DP class. This DP behavior, however, is masked by extremely slow (probably
logarithmic) corrections. Searching the critical point by fitting straight lines in a double
logarithmic plot may therefore lead to systematic errors in the estimate of the critical
threshold since the true critical line is not straight but slightly curved. This in turn
leads to even larger systematic errors for the critical exponents. However, as the
computational effort is increased, these estimates seem to drift towards DP exponents.

The problem of systematic errors and drifting exponents can be observed for
example in the work by Kockelkoren and Chaté, who tried to establish the PCPD
as a new universality class as part of a general classification scheme [51]. Introducing a
particularly efficient model they observed clean power laws in the decay of the density
over several decades, leading to the estimates

δ = β/ν‖ = 0.200(5), z = ν⊥/ν‖ = 1.70(5), β = 0.37(2). (40)

However, increasing the numerical effort by a decade in time, it turns out that their
critical point pc = 0.795410(5), including its error margin, lies entirely in the inactive
phase (see Fig. 14). In the attempt to obtain an apparent power-law behavior, it seems
that the authors systematically underestimated the critical point.
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Figure 14. High-performance simulation of the PCPD model introduced by

Kockelkoren and Chaté. The plot shows the density of active sites multiplied by

the expected power law. As can be seen, the lines are slightly curved. Kockelkoren

and Chaté simulated the process up to about 107 Monte Carlo updates (dotted line),

identifying the blue line in the middle as critical curve. Extending these simulations

by one decade one recognizes that this curve is actually subcritical and that the true

critical threshold has to be slightly higher. Obviously a slow drift towards DP (slope

indicated by dashed line) cannot be excluded.

Presently it is still not yet clear whether the PCPD belongs to the DP universality
class or not. Apparently computational methods have reached their limit and more
sophisticated techniques are needed to settle this question.

4. Epidemic spreading with long-range interactions

Directed percolation is often used as a caricatural process for epidemic spreading.
Suppose that infected and healthy individuals are sitting in a train, as shown in Fig. 15.
On the one hand, infected people infect their nearest neighbors with a certain probability
per unit time. On the other hand, infected individuals may recover spontaneously.
Depending on the rates for infection and recovery, this toy model for epidemic spreading
just resembles a simple DP process.

Although DP is too simplistic to describe epidemic spreading in reality, there are
some important analogies. Certainly, epidemic spreading in Nature is a non-equilibrium
process with a transition-like behavior at some threshold of the infection rate. For
example, as an increasing number of people refuses vaccinations, the question arises
at which percentage of unprotected individuals certain diseases, that became almost
extinct, will again percolate through the society.

Epidemic spreading in Nature is of course a much more complex phenomenon.
For example, it takes place in a very disordered environment and involves short- and
long-range interactions. Moreover, individuals protect themselves by sophisticated
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infection: recovery:

Figure 15. Directed percolation as a caricature of an epidemic process

immunization strategies. Certainly, physicist will never be able to predict epidemic
spreading in Nature quantitatively. However, it is possible to extend DP towards a
more realistic description of epidemic spreading and to study how they influence the
behavior at the transition. Some of these extensions will be discussed in the following.

4.1. Immunization and mutations

As a first step towards a more realistic description of epidemic spreading we may include
the effect of immunization. For example, we may declare all sites that were active at least
once in the past as immune. One then introduces two different infection probabilities,
namely, a probability for first infection p0, and a second (usually smaller) probability
p for the reinfection of immune sites. The case of perfect immunization (vanishing
reinfection probability) is known as general epidemic process [61] which can be regarded
as a dynamical procedure to grow isotropic percolation clusters.

Introducing a finite reinfection probability one obtains the phase diagram shown
in Fig. 16. It comprises a curved phase transition line with the same critical behavior
as in the generalized epidemic process which separates phases of finite and annular
growth. Moreover, there is a horizontal transition line above which compact cluster
growth is observed. The critical properties along this line are partly dictated by the
DP behavior inside immune regions, combined with non-universal properties for the
growth of the clusters at its boundaries [62]. Both transition lines meet in a point with
an interesting multicritical behavior. Extending this model by possible mutations of
the spreading agent, the memory of immunization is lost. As a result one observes a
controlled crossover back to DP [63].

4.2. Long-range infections

Realistic diseases spread by different transport mechanisms, including direct contact
between local individuals, transport by carriers such as mosquitos, and long-range
transport e.g. by air planes. Usually it is very difficult to predict how these transport
mechanism contribute to epidemic spreading. As an interesting empirical approach,
Brockmann and Geisel traced the spatio-temporal trajectories of individual dollar notes
within the United States [64, 65]. In agreement with previous conjectures [66] they
found out that the transport distances are distributed algebraically with some empirical
exponent. Moreover, the time intervals at which the dollar notes were registered were
found to obey a power law as well.
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Figure 16. Phase diagram for directed percolation with immunization (see text). The
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Motivated by such empirical studies it is near at hand to generalize DP such that
the spreading distances r are distributed as a power law

P (r) ∼ r−d−σ , (σ > 0) (41)

where σ is a control exponent. In the literature such algebraically distributed long-
range displacements are known as Lévy flights [67] and have been studied extensively
e.g. in the context of anomalous diffusion [68]. In the present context of epidemic
spreading it turns out that such long-range flights do not destroy the transition, instead
they change the critical behavior provided that σ is sufficiently small. More specifically,
it was observed both numerically and in mean field approximations that the critical
exponents change continuously with σ [69–71]. As a major breakthrough, Janssen et al

introduced a renormalizable field theory for epidemic spreading transitions with spatial
Lévy flights [72], computing the critical exponents to one-loop order. Because of an
additional scaling relation only two of the three exponents were found to be independent.
These results were confirmed numerically by Monte Carlo simulations [73].

4.3. Incubation times

As a second generalization one can introduce a similar long-range mechanism in temporal

direction. Such ‘temporal’ Lévy flights may be interpreted as incubation times ∆t
between catching and passing on the infection. As in the first case, these incubation
times are assumed to be algebraically distributed as

P (∆t) ∼ ∆t−1−κ , (κ > 0) (42)

where κ is a control exponent. However, unlike spatial Lévy flights, which take place
equally distributed in all directions, such temporal Lévy flights have to be directed
forward in time. Again it was possible to compute the exponents by a field-theoretic
renormalization group calculation [74].
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Figure 17. Phase diagram of DP with spatio-temporal Lévy flights.

Recently, we studied the mixed case of epidemic spreading by spatial Lévy
flights combined with algebraically distributed incubation times [75]. In this case the
corresponding field theory was found to render two additional scaling relations, namely,

2β + (σ − d)ν⊥ − ν‖ = 0 , (43)

2β − dν⊥ + (κ− 1)ν‖ = 0 . (44)

Hence only one of the three exponents is independent. In particular, the dynamical
exponent z locks onto the ratio σ/κ. A systematic numerical and field-theoretic study
leads to a generic phase diagram in terms of the control exponents σ and κ which is
shown in Fig. 17. It includes three types of mean-field phases, a DP phase, two phases
corresponding to purely spatial or purely temporal Lévy flights, and a novel fluctuation-
dominated phase describing the mixed case in which the critical exponents have been
computed by a field-theoretic renormalization group calculation to one-loop order.

5. Surface growth and non-equilibrium wetting

Another interesting direction of non-equilibrium physics is the study of wetting far from
equilibrium. Wetting phenomena occur in a large variety of experiments, where a planar
substrate is exposed to a gas phase. Usually the term ‘wetting’ refers to a situation
where a bulk phase in contact with a substrate coexists with a layer of a different phase
which is preferentially attracted to the surface of the substrate. By changing physical
parameters such as temperature and chemical potential, the system may undergo a
wetting transition from a non-wet phase, where the thickness of the layer stays finite,
to a wet phase, where the layer becomes macroscopic.

In many experimental situations it is reasonable to assume that a wetting stationary
layer is in thermal equilibrium. In fact, methods of equilibrium statistical mechanics
turned out to be very successful in a large variety of theoretical and experimental
studies [76]. Therefore, the question arises whether models for wetting far from
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Figure 18. Dynamical rules of the restricted solid-on-solid model for non-equilibrium

wetting. Neighboring heights are restricted to differ by at most one unit.

equilibrium may exhibit new physical phenomena which cannot be observed under
equilibrium conditions.

Non-equilibrium wetting is usually modeled as a Kardar-Parisi-Zhang (KPZ)
growth process [77] growing on top of a hard substrate. Theoretically such a system can
be described by a KPZ equation in a potential [78, 79]

∂h(x, t)

∂t
= σ∇2h(x, t) − ∂V (h(x, t))

∂h(x, t)
+ λ(∇h(x, t))2 + ξ(x, t) , (45)

where ξ(x, t) is a Gaussian noise. It is important to note that the nonlinear term
λ(∇h(x, t))2 in this equation is a relevant perturbation of the underlying field theory, i.e.,
even if λ is very small, it will be amplified under renormalization group transformations,
driving the system away from thermal equilibrium. In fact, as can be shown by
constructing a closed loop, it is this term that breaks detailed balance.

Some time ago we introduced a simple solid-on-solid (SOS) model for non-
equilibrium wetting in 1+1 dimensions [80–82]. The model is controlled by an adsorption
rate q, a desorption rate p, and optionally by a special deposition rate q0 on sites at
height zero (desorption at the edges takes place at rate 1, see Fig. 18). Setting q0 = q
and varying the growth rate the model exhibits a continuous wetting transition at a
certain critical growth rate qc(p). This wetting transition is related to the unpinning
process of an interface from the substrate. Moreover, for q0 6= q the model can emulate a
short-range interaction between the interface and the substrate [83,84]. It was found that
sufficiently strong attractive interaction modifies the nature of the wetting transition and
makes it first order. In addition, it has been demonstrated that there exists an extended
region in the phase diagram, where the pinned and the moving phases coexist in the sense
that the transition time from the pinned to the moving phase grows exponentially with
the system size so that the two phases become stable in the thermodynamic limit. This
type of phase coexistence is in fact a new phenomenon that occurs only far away from
equilibrium and should be experimentally observable.

6. Summary

At the end of this lecture let us address the crucial question to what extent these
recent developments in the field of non-equilibrium statistical physics can be confirmed
experimentally. Unfortunately, the experimental evidence is still very poor. For
example, although many transition-like phenomena far from equilibrium can be seen
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The bold black line represents the second-order phase transition line. For sufficiently
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in Nature, there is so far no experiment in which the exponents of DP or any other class
of absorbing phase transitions can be reproduced quantitatively in a reliable way. This
is surprising since various possible experimental realizations have been proposed [85].
For deposition-evaporation phenomena the situation is not much better: Up to now no
convincing experiment is known in which the exponents of the KPZ universality class
can be confirmed.

The poor experimental evidence could be partly due to the fact that many
experimentalists are not yet fully aware of recent developments in non-equilibrium
statistical physics. Similarly, many theoretical physicists do not care so much about
experiments and regard instead the computer as the beauty of Nature. However, the
poor experimental evidence could have more fundamental reasons. For example, despite
the robustness and simplicity of DP, the existence of an absorbing state is a highly
idealized requirement that is difficult to realize experimentally.

With the advent of modern nanotechnology, however, the situation could change in
near future. Therefore, it is particularly important to understand the crossover between
quantum and classical behavior in order to find out where the models of non-equilibrium
statistical physics can be applied. All in all we should be optimistic: Universality classes
which are as fundamental as DP or KPZ are so beautiful that they should be relevant
in Nature. In fact, in equilibrium statistical mechanics there was quite a long way
from Onsagers solution of the two-dimensional Ising model to the ample experimental
evidence that is available today.
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[13] S. Lübeck, Universal scaling behavior of non-equilibrium phase transitions, Int. J. Mod. Phys.

18, 3977–4118 (2004).

[14] H. Hinrichsen, Non-equilibrium critical phenomena and phase transitions into absorbing states,

Adv. Phys. 49, 815–958 (2000).

[15] D. Stauffer and A. Aharony, Introduction to Percolation Theory, Taylor & Francis, London, 1992.

[16] I. Jensen, Low-density series expansions for directed percolation: III. Some two-dimensional

lattices, J. Phys. A 37, 6899–6915 (2004).

[17] E. Domany and W. Kinzel, Equivalence of cellular automata to Ising models and directed

percolation, Phys. Rev. Lett. 53, 311–314 (1984).

[18] W. Kinzel, Phase transitions of cellular automata, Z. Phys. B 58, 229–244 (1985).

[19] S. Wolfram, Statistical mechanics of cellular automata, Rev. Mod. Phys. 55, 601–644 (1983).

[20] G. F. Zebende and T. J. P. Penna, The Domany-Kinzel cellular automaton phase diagram, J.

Stat. Phys. 74, 1273–1279 (1994).
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[52] G. Ódor, Critical behaviour of the one-dimensional annihilation-fission process 2A → ∅, 2A → 3A,

Phys. Rev. E 62, R3027 (2000).
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