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There is no need to stress the importance of variational 
problems in mathematics and its applications. The list 
of variational problems, of different degrees of diffi- 
culty, is very long, and it stretches from famous min- 
imum and maximum problems of antiquity, through 
the variational problems of analytical mechanics and 
theoretical physics, all the way to the variational prob- 
lems of modern  opera t ions  research. While maxi- 
mizing or minimizing a function or a functional is a 
routine procedure, some special variational problems 
give solutions which either unify previously uncon- 
nected results or match surprisingly well the results of 
our experiments. Such variational problems are called 
variational principles. Whether or not the architecture 
of our world is based on variational principles is a phil- 
osophical problem. But it is a sound strategy to dis- 
cover and apply variational principles in order to ac- 
quire a better understanding of a part of this architec- 
ture. In applied mathematics we get a model by taking 
into account some connections and, inevitably, ig- 
noring others. One way of making a model convincing 
and useful is to obtain it as the solution of a variational 
problem. 

The aim of the present paper is to bring some ar- 
guments in favour of the promotion of the variational 
problem of entropy maximization to the rank of a vari- 
ational principle. 

Entropy as a Measure of  Uncertainty 

Sometimes a variational principle deals with the max- 
imization or minimization of a function or a functional 
without special significance. In such cases the accep- 
tance of the variational principle is justified by the 
properties of its solution. A relevant example is the 
principle of minimum action in analytical mechanics. 
Here the so called "action" has no direct and natural 
physical interpretation but the solution (the Hamilton 
canonical equations) gives just the law of motion. In 
case of the principle of maximum entropy, the function 
which is maximized, namely the entropy, does have 
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remarkable properties entitling it to be considered a 
good measure of the amount of uncertainty contained 
in a probability distribution. 

Let p = (Pl . . . . .  Pm) be a finite probability distri- 
bution, i.e., rn real numbers satisfying 

Pk ~ 0, (k = 1 . . . . .  m); ~ Pk = 1. 
k=l 

(1) 

The number  Pk may represent the probability of the k- 
th outcome of a probabilisfic experiment or the prob- 
ability of the k-th possible value taken on by a finite 
discrete random variable. 

The entropy attached to the probability distribution 
(1) is the number 

Hm(p) = Hm(pl . . . . .  Pm) = - -  

m 

Pk In Pk (2) 
k = l  

where we put 0 �9 In 0 = 0 to insure the continuity of 
the function - x  In x at the origin. For each positive 
integer m >i 2, H m is a function defined on the set of 
probability distributions satisfying (1). 

Entropy has several properties with interesting in- 
terpretations. We mention some of them. 

1. Hm(p) ~ O, continuous, and invariant under any 
permutation of the indices. 
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2. If p has only one component  which is different from 
zero (i.e., equal to 1) then Hm(P) = O. 

3. Hm(Pl . . . . .  Pro) = Hm+I(Pl  . . . . .  Pro, 0). 

4. Hm(pi  . . . . .  Pm) ~ Hm(1/rn . . . . .  1/rn), with equality 
if and only if Pk = l / m ,  (k = 1 . . . . .  rn). 

5. If ~ = ('rh, 1 . . . . .  ~rm,n)'is a joint probability distri- 
bution whose marginal probability distributions are p 
= (Pl . . . . .  Pro) and ~ = (ql . . . . .  q,), respectively, 
then 

Hmn(~rl,1 . . . . .  ~rm, n) = Hm(pl  . . . .  , P~) + 
m 

Pk Hn (Wk,1/Pk , " �9 �9 , Wk, n/Pk) (3) 
k = l  

where the conditional entropy Hn('rtk,1/Pk . . . . .  ";rk, n/Pk ) 
is computed  only for those values of k for which 
pk#O.  

6. With the notations given above 

m 

Pk H,,('rrk, I/Pk . . . . .  "n*,,,/Pk) ~ H,(q l  . . . . .  q,,) 
k=l 

(4) 

with equality if and only if 

"rrkA = Pk qr (k = 1 . . . . .  m; ! = 1 , . . . ,  n) ,  

in which case (3) becomes 

H m , ( ~  ) = H, , (p)  + Hn(-q). 

All these properties can be proved in an elementary 
manner. Without entering into the technical details, 
we note that properties 1-3  are obvious while prop- 
erty 5 can be obtained by a straightforward compu- 
tation taking into account only the definition of en- 
tropy. Finally, from Jensen's inequality 

ak f(bk) ~ f ( ~ ak bk ) 
k = l  k = l  

possible outcome (that is, a strictly deterministic ex- 
periment)  contains no uncer ta in ty  at all; we know 
what will happen before performing the experiment. 
This is just property 2. If to the possible outcomes of 
a probabilistic experiment we add  another outcome 
having the probability zero, the amount of uncertainty 
with respect to what will happen in the experiment 
remains unchanged (property 3). Property 4 tells us 
that in the class of all probabilistic experiments having 
m possible outcomes, the maximum uncertainty is con- 
tained in the special probabilistic experiment whose 
outcomes are equally likely. Before interpreting the 
last two properties let us consider two discrete random 
variables X and Y, whose ranges contain rn and n nu- 
merical values, respectively. Using the same notations 
as in property 5, suppose that ~ is the joint probability 
distribution of the pair (X, Y), and p and ~/ are the 
marginal probability distributions of X and Y, respec- 
tively. In this case equality (3) may be written more 
compactly 

H ( X ,  Y )  = H ( X )  + H ( Y I X  ) (5) 

where 

H(X.  Y )  = Hmd~rl,X . . . . .  ~'m,.) 
H ( X )  = Hm(Pl  . . . .  , Pm) 

and where 

m 

H ( Y [ X )  = ~ ,  Pk Hn(~k,1/Pk . . . . .  ~k,n/Pk) 
k = l  

is the conditional entropy of Y given X. According to 
(5), the amount  of uncertainty contained in a pair of 
random variables (or, equivalently, in a compound- -  
or product--probabilist ic experiment) is obtained by 
summing the amount of uncertainty contained in one 
component  (say X) and the uncertainty contained in 
the other component  (Y) conditioned by the first one 
(X). Similarly, we get for H ( X ,  Y )  the decomposition 

H ( X ,  Y )  = H ( Y )  + H ( X I Y  ) (6) 

where, 

H ( Y )  = Hn(q~ . . . . .  qn) 

applied to the concave function f(x) = - x  In x, we 
obtain property 4 by putting a k = l /m ,  b k = Pk, k = 
1 . . . . .  m, and the inequality (4) by putting a k = Pk, bk 
= ~k,t  /Pk, k = 1 . . . . .  m, for any ~ = 1 . . . . .  n, and, 
in the last case, summing the resulting n inequalities. 

Interpretation of the above properties agrees with 
common sense, intuition, and the reasonable require- 
ments that can be asked of a measure of uncertainty. 
Indeed, a probabilistic experiment which has only one 

and 

H ( X I Y )  = ~ q t H m \ q '  . . . . .  - -  

= I  

Here 

Hm(~l ,dq t  . . . . .  ~rm,t/qt) 

qt / "  
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is the conditional entropy of X given the [ -th value of 
Yt. Hm is defined only for those values of ~ for which 
qr > 0. From (5) and (6) we get 

H(X) - H(X[Y) = H(Y) - H(YIX ) 

which is the so-called "uncertainty balance", the only 
conservation law for entropy. 

Finally, property 6 shows that some data on X can 
only decrease the uncertainty on Y, namely 

H(YIX ) ~< H(Y)  (7) 

with equality if and only if X and Y are independent. 
From (5) and (7) we get 

H(X, Y) ~< H(X) + H(Y) 

with equality if and only if X and Y are independent. 
Fortunately this inequality holds for any number of 
components. More generally, for s random variables 
with arbitrary finite range we can write 

H(X 1 . . . . .  ms) ~ H(X,) + . . .  + H(Xs) 

with equality if and only if X 1 . . . . .  X s are globally 
independent. Therefore 

W(X 1 . . . . .  Xs) = ~ H ( X i )  - H(X 1 . . . . .  Xs) ~ 0 
i = 1  

measures the global dependence be tween  the random 
variables X 1 . . . . .  X s, that is, the extent to which the 
system (X 1 . . . . .  Xs), due to in te rdependence ,  
makes up "something more" than the mere juxtapo- 
sition of its components.  In particular, W = 0 if and 
only if X 1 . . . . .  X s are independent. 

Note that the difference between the amount of un- 
certainty contained by the pair (X, Y) and the amount 
of dependence  b e t w e e n  the componen t s  X and Y, 
namely, 

d(X, Y) = H(X, Y)  - W(X, Y) 

or, equivalently, 

d(X, Y) = 2H(X, Y)  - H(X) - H(Y)  
= H(XIY ) + H(YIX ), 

is a distance between the random variables X and Y, 
with the two random variables considered identical if 
either one comple te ly  determines  the other,  or if 
H(X]Y) = 0 and H(YIX ) = 0. Therefore, the "pure 
randomness" contained in the pair (X, Y), i.e., the 
uncertainty of the whole, minus the dependence be- 
tween the components,  measured by d(X, Y), is a dis- 
tance. This geometrizes chaos! 

Discrete entropy as a measure of uncertainty whs 
introduced by C. E. Shannon [12] by analogy with 
Boltzmann's H function [1] in statistical mechanics. It 
was also used by Shannon as a measure of informa- 
tion, considering information as removed uncertainty. 
Before a probabilistic experiment is performed the en- 
tropy measures the amount  of uncertainty associated 
with the possible outcomes. After the experiment the 
ent ropy measures the amoun t  of supplied informa- 
tion. We stress that this is the first time a mathematical 
function has aimed to measure the uncertainty con- 
tained in a probabilistic exper iment- -an  entity so dif- 
ferent from measurable characteristics of the real world 
such as length, area, volume, temperature, pressure, 
mass, charge, etc. 

Is the Shannon entropy unique? The answer  de- 
pends on what properties are taken as the axioms for 
the measure of uncertainty. Khintchine [9] proved that 
properties 1, 3, 4, and 5, taken as axioms (which is 
quite  reasonable  from an intuit ive point  of view),  
imply uniquely the expression (2) for the measure of 
uncertainty up to an arbitrary positive multiplicative 
constant. This allows us to choose arbitrarily a base 
greater than 1 for the logarithm without affecting the 
basic properties of the measure. 

The Principle of Maximum Entropy 

Let us go back to property 4: The uncertainty is max- 
imum when the outcomes are equally likely. The uni- 
form distribution maximizes the entropy; the uniform 
dis t r ibut ion contains the largest  amount  of uncer-  
tainty. But this is just Laplace's Principle of Insufficient 
Reason, according to which if there is no reason to 
discriminate between two or several events the best 
s t ra tegy is to consider  them as equally likely. Of 
course, for Laplace this was a subjective point of view, 
based on prudence and on common sense. Indeed, 
without knowing anything about entropy we apply 
Laplace's Principle of Insufficient Reason in everyday 
life, even in analyzing the simplest experiments. In- 
deed, in tossing a coin we usually attach equal prob- 
abilities to the two possible outcomes not after a long 
series of repetitions of this simple experiment followed 
by a careful analysis of the stability of the relative fre- 
quencies of the possible outcomes but simply because 
we apply Laplace's Principle and realize that we have 
no good reasons for discriminating between the two 
outcomes. But, as we have already seen, if we accept 
the Shannon entropy as the measure of uncertainty, 
then property 4 is just the mathematical justification 
of the Principle of Maximum Entropy, which asserts 
that entropy is maximized by the uniform distribution 
when no constraint is imposed on the probability dis- 
tribution. In such a case, our intuition, based on our 
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past experience, gives us the right solution. But what  
happens  when  there are some constraints imposed on 
the probability distribution? 

Before answering this question let us  see what  kinds 
of constraints may  be imposed. Quite often in appli- 
cations we have at our  disposal one or several mean 
values of one or several random variables. Thus in 
statistical mechanics the state functions are random 
variables because the state space is a probability space 
and we can measure  only some mean  values of such 
state functions. For instance, to each microscopic state 
there corresponds a well-defined value of the energy 
of the system. But we cannot determine wi th  certainty 
the real, unique,  microscopic state of the system at 
some instant t, and  so we construct instead a proba- 
bility distribution on the possible states of the system. 
Then the energy becomes a random variable and what  
we can really measure,  at the macroscopic level, is the 
mean value of this r andom variable, i.e., the macro- 
scopic energy. The macroscopic level is the level of 
mean values and  some of these mean values can be 
measured.  But we need  a probabilisfic model  of the 
microscopic level, i.e., a probability distribution on the 
possible microscopic states of the system. In general, 
there are m a n y  probability distributions (even an in- 
finity!) compat ib le  w i th  the  k n o w n  m e a n  values.  
Hence the question: What  probability distribution is 
"best"  and with  respect to what  criterion? 

In 1957 E. T. Jaynes [8] gave a very natural  criterion 
of choice by int roducing the Principle of M a x i m u m  En- 
tropy: From the set of all probability distributions com- 
patible with one or several mean values of one or sev- 
eral random variables, choose the one that  maximizes 
Shannon 's  entropy.  Such a probability distribution is 
the "largest one";  it will ignore no possibility, being 
the most  uniform one, subject to the given constraints. 
In t roduced  for solving a problem in statistical me- 
chanics, the Principle of Maximum Entropy has be- 
come a widely applied tool for constructing the prob- 
ability distribution in statistical inference, in decision 
theory ,  in pa t t e rn - r ecogn i t i on ,  in c o m m u n i c a t i o n  
theory, and in time-series analysis, because in all these 
areas what  we generally know is expressed by mean 
values of some r andom variables and wha t  we need is 
a probability distribution which ignores no possibility 
subject to the relevant constraints. 

To see how this principle works let us take the sim- 
plest possible case, the case in which we know the 
mean value E(f )  of a r andom variable f whose  possible 
values are h . . . . .  fm" We need a probability distri- 
bution p = (Pl . . . . .  Pm), 

m 

Pk > 0 , ( k  = 1 . . . . .  m); ~ Pk = 1 (8) 
k = l  

satisfying the constraint  

m 

E(f )  = ~ ~Pk" (9) 
k = l  

In the trivial case m = 2, the mean  value E(f)  uniquely 
de f ines  the  c o r r e s p o n d i n g  probabi l i ty  d i s t r ibu t ion  
from the linear equation 

Ef t )  = flPl + f2(1 - Pl). 

But for any  m I> 3 there is an infinity of probability 
distributions (8) satisfying (9). Applying the Principle 
of Maximum Entropy we choose the most  uncertain 
probability distribution, i.e., the probability distribu- 
tion that  maximizes the en t ropy  

m 

Hm(p) = - ~ pk ln pk 
k = l  

subject to the constraints (8) and  (9). Of course, H m is 
a concave  and  c o n t i n u o u s  func t ion  de f ined  in the 
convex domain  characterized by (8) and (9). There is 
only one global maximum point  belonging to the open 
set 

{P = (P~ . . . . .  Pm)lPk > O, k = 1 . . . . .  m; 

Pk -- 1 = O, f k P k - -  E f t )  = 0}. 
k = l  k = l  

Taking the Lagrange function 

L = Hm(Pl . . . . .  Pm) - o~ Pk -- 1 

where  ~x and  13 are the Lagrange  mult ipl iers  corre- 
sponding to the two constraints, and put t ing the first 
order partial derivatives equal to zero we get 

aL 

3pk 
- In Pk --  1 --  ot - -  ~ fk = O, (k  = 1 . . . . .  m ) ,  

m 

3L 1 ~ ,  Pk O, 
0OL k = l  

m 

3L E f t )  - ~ ,  fk Pk O. 
Of 3 k= l 

Thus the solution is 

e - ~0f~ 
Pk -- m , (k = 1 . . . . .  m) (10) 

Y', e-"J, 
r = l  
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where 130 is the solution of the exponential equation 

m 

[fk -- E(f)] e-f~(f~-E(f)) = 0. (11) 
k = l  

If the random variable f is nondegenerate (i.e., i f f  takes 
on at least two different values), such a solution exists 
and is unique because the function 

m 

G(f3) = ~,  Ilk -- E(f)] e-~(f~-E(f)) (12) 
k = l  

is strictly decreasing with 

lim G(6) = + ~, lim G(~) = - oo. 
13 -~  - ~  6 - -*  + ~  

We have already seen that when there is no con- 
straint, the solution of the Principle of Maximum En- 
tropy is the uniform probability distribution. When the 
mean value E(f)  of a random variable f is given, then 
the solution of the Principle of Maximum Entropy is 
(10) or, equivalently, 

1 
- - - e  -~Jk, (k = 1 . . . . .  m) p k -  ,v(~) 

where 

m 

~(~)  = ~,  e -~fk 
k = l  

and 60 is the unique solution of the equation 

d In cI~(6 ) 
- E ( f ) .  df~ 

This is just the Gibbs, or canonical, distribution en- 
countered in almost all books on statistical mechanics 
and, more recently, in some books on decision theory. 
Now we see why the canonical distribution is useful 
in applications: It is the most uncertain one, the most 
uniform one, it ignores no possibility subject to the 
constraint given by the mean value E(f) .  

Since (11) is an exponential equation, its solution 60 
may be a transcendental number. However, the fact 
that the function G given by (12) is strictly decreasing 
permits us to approximate the solution 130 with great 
accuracy. 

For instance, let m = 3, h = 12, f2 = 15, f3 = 20 
and the mean value E(f)  = 18.12. Using a simple TI- 
57 pocket calculator, we can obtain in a few minutes 
the solution of equation (11) (correct to six decimals), 
namely, 60 ~ - 0.2364201. The corresponding solution 

of the Principle of Maximum Entropy is Pl = 
0.1035103, P2 = 0.2103835, P3 = 0.6861062. This is the 
most uniform probability distribution compatible with 
the given mean value. For some other constraints, the 
exact values of the Lagrange multipliers introduced for 
maximizing the entropy may be determined exactly. 
Without entering into technical details we mention 
some remarkable results relating to the Principle of 
Maximum Entropy: 

a) If f is a random variable whose range is countable, 
namely, if 

{kulu > 0, k = 0,1,2 . . . .  } 

(this is true of the energy in quantum mechanics--in 
which case u is the quantum of energy--or  of many 
discrete functions in operations research-- in  which 
case u is the unit), and if the mean value E(f)  is given, 
then the probability distribution 

Pk > O, (k = 0,1 . . . .  ), ~ ,  Pk = 1 
k=O 

maximizing the countable entropy: 

H = - Z Pk In Pk 
k=O 

is 

Pk = 

u(E(f))  k 
(u + E(f))  k+l"  k = 0,1,2 . . . . .  

We see that the unit u and the mean value E(f)  com- 
pletely determine the solution of the Principle of Max- 
imum Entropy. The importance of this probability dis- 
tribution is stressed by M. Born [2]. 

Before discussing the continuous case, we note an 
unusual property of entropy that permits us to maxi- 
mize it even when the solution is a sequence satisfying 

Pk > 0 ,  ~ Pk = 1 .  
k = 0  

In such a case, instead of computing the partial deriv- 
atives wi th  respect to a countable set of variables 
(P0,Pl . . . .  and the Lagrange multipliers corre- 
sponding to the constraints), it is enough to take into 
account the simple equality 

1 
t l n t  = ( t -  1) + ~ - ( t -  1) 2 , 

true for any t > 0, where % depending on t, is a positive 
number located somewhere between 1 and t. (This 

46 THE MATHEMATICAL INTELLIGENCER VOL. 7, NO. 1, 1985 



equal i ty  is obta ined from the Taylor expans ion  of 
t In t about 1.) Applying this equality and considering 
the constraint 

oc 

E ( f )  = ~ ,  kU pk < ~176 
k = O  

we have, for o~ > 0, ~ > 0, 

H -  oL " l - f3E(f) = - ~ pk ln(pk e~+~ku) = 
k = 0  

- ~ ,  e - " - " h ( p k  e~+"ku) In (pk e~+~ku) 
k = O  

oc oc  

- ~ ,  e-~'-"kU(pke~+~ku -- 1) = --1 + ~ e - ~ - " k u ;  
k = 0  k = O  

here the upper bound is independent of the proba- 
bility distr ibution {Pk, k = 0,1 . . . .  }, and we have 
equality if and only if 

Pk = e-~-f~ku, k = 0,1 . . . .  

From the first constraint 

oc 

e -a-f~ku = 1 
k=0 

we obtain 

e - a  = 1 - e -f~u 

and from the second constraint 

E ( f )  = ~ ,  ku(1 - e -~u) e -"ku 
k = 0  

we obtain the solution 

u (E ( f ) )  k 
Pk = (u + E ( f ) )  k + l '  k = 0,1 . . . .  

b) In the continuous case, suppose that we know 
the mean value N- of a positive continuous random 
variable whose probability density function is square- 
integrable. In such a case, the continuous entropy 

f2 H(g) = - B(x) In g (x )dx  (13) 

is maximized by 

1 

~(x~ = e " i f  x > 0  

O, elsewhere 

which is just the well-known exponential probability 
density function. Now we have a justification for the 
usual assumption in queueing theory that the inter- 
arrival time is exponentially distributed. Such a prob- 
ability distribution is the most uncertain one, the most 
prudent one, and it ignores no possibility subject to 
the mean interarrival time p,. 

c) Of course, it is possible to have many constraints. 
Suppose that, in the continuous case, we know both 
the mean p, and the variance cr 2 of a cont inuous  
random variable whose probability density function is 
square-integrable. The agreeable surprise is that, in 
such a case, the continuous entropy (13) is maximized 
just by 

(x - ~)2 

1 2o~ 
8(x) - crX/~ e , ( - ~ 1 7 6  +~)  

which is the probability density function of the normal 
distribution N(~, or2). Now we see why this probability 
distribution has been frequently used in the applica- 
tions of statistical inference and why it deserves the 
adjective "normal";  in the infinite set of square in- 
tegrable probability density functions defined on the 
real line with mean ~ and variance cr 2, the normal dis- 
tribution (or de Moivre-Laplace-Gauss distribution) is 
the distribution that is most uncertain and that max- 
imizes the entropy. Entropy would have had to be 
invented if only to demonstrate this variational prop- 
erty of the normal distribution! 

The fact that the Principle of Maximum Entropy can 
be used to obtain a unified variational treatment of 
some well-known probability distributions is just one 
reason for its importance. In fact, we can apply the 
same strategy (i.e., maximizing the entropy) subject to 
more numerous and more sophisticated constraints, 
such as a large number of mean values (moments of 
order greater than 2) of several random variables. The 
solution of the Principle of Maximum Entropy will give 
probability distributions never met before. 

We conclude with some comments on what is sub- 
jective and what  is objective in the use of the Principle 
of Maximum Entropy. As a variational problem (max- 
imize the entropy subject to constraints expressed by 
mean values of some random variables) it is as objec- 
tive as any other mathematical optimization problem. 
Accepting the probabilistic entropy as a measure of 
uncertainty and interpreting the solution of the Prin- 
ciple of Maximum Entropy from the viewpoint of the 
amount  of uncertainty contained is, in spite of the 
"naturalness" of the properties 1 -6  above, a subjective 
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attitude. But the fact that some important probability 
distributions from statistical inference (exponential, ca- 
nonical, uniform, and, above all, the most important 
one, the normal distribution) are solutions of it enables 
us to say that the use of the Principle of Maximum 
Entropy proves to be more than a simple convention. 

The Principle of Maximum Entropy has implied both 
some other entropic variational problems (the mini- 
mization of the Kullback-Leibler divergence,  the 
minimization of the interdependence) and many new 
applications (for example its recent applications in 
time-series analysis and the entropic algorithm for pat- 
tern-recognition which proves to have the smallest 
mean length); but  this is another story. 
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The Complete Works of/~lie Cartan, originally pub- 
lished in 1952, were out of print for several years but 
have now been reissued as a 4-volume set. 

l~lie Cartan's work is, by virtue of its depth, its variety 
and its great originality, increasingly being recognised 
as a turning point in the evolutionary history of geo- 
metry, and its far-reaching consequences are not yet 
completely explored. Many contemporary geometers. 
still draw their inspiration from reading Cartan's 
work. 

Many of the concepts l~lie Cartan introduced have 
spread their impact to other areas of mathematics. 
The geometry of bundles, for instance, has estab- 
lished itself as a classical topic, especially since the 
development of gauge theory in theoretical physics 
has made it the framework for the study of particle 
interactions. The role played by transformation 
groups in the understanding of geometric problems 
has been confirmed. Many aspects of Riemannian 
geometry have also penetrated areas such as topology 
and group theory. The current interest in non-linear 
pde's is drawing attention back to Cartan's develop- 
ment of the subject. 

The three parts of the Complete Works correspond to 
three different subject areas: I. Lie groups, II. algebra, 
differential systems and the equivalence problem, 
III. geometry and other topics. They collect together 
all his research articles, but not monographs or cdrres- 
pondence. However they do also include a report on 
his work written by l~lie Cartan himself in relation 
with his candidacy to the French Academy of Sciences. 
This new edition also features the Obituaries for t~lie 
Cartan written by S. S. Chern and C. Chevalley for the 
American Mathematical Society, and by 
H. Whitehead for the Royal Society. 
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