
WHAT IS THE ERGODIC THEOREM? 

G. D. BIRKHOFF, Harvard University 

The integral of Lebesgue (1901), founded upon Borel measure, has been a 
dominating weapon in the striking advance of Analysis during the present 
century. Perhaps the Ergodic Theorem (1931) is destined to hold a central posi- 
tion in this development. Indeed, Wiener and Wintner in a recent article* refer 
to it as "the only result of real generality established for the solutions of dy- 
namical systems." 

To understand the theorem and the nature of its applications it is necessary 
first of all to say something about (Borel-Lebesgue) measure, 'i.e., "probability" 
in the sense sketched by Poincare in the third volume of his Methodes Nouvelles 
de la Mecanique Celeste. We restrict ourselves to the case of a line segment of 
unit length with coordinate x, 0 <x < 1. Suppose that we have a set of non-over- 
lapping intervals, finite in number and of total length 1<1 in this segment. 
The probability in a certain intuitive sense that a point, taken at random, lies 
in one of these intervals, is 1; and the probability fhat it lies in the comple- 
mentary set is of course 1 -1. 

Now suppose that we are given a point set M containing an infinite number 
of points, which can be enclosed within an infinite set of non-overlapping inter- 
vals of lengths 11, 12, * * * of total length. 

1 + 12 + 13 + = < 1. 

Then clearly the probability that a point, taken at random, lies in M, cannot 
exceed 1; and the probability that it lies in the complementary set is at least 
1-1. If now M is of such a nature that it can be enclosed in an infinite set of 
intervals of total length not exceeding an arbitrarily small quantity E, it is ap- 
parent that the probability of a random point falling in M does not exceed 
E, i.e. the probability is 0. Such a set M is said to be of measure 0. 

For instance, the set of rational points x = m/n which is everywhere dense 
on the line segment, is of measure 0. In fact these points may be arranged in 
order 

0, 1; 12; 13 23 . 4 1 3. 
1 2 3 

4;.. 

and the nth one of these points may obviously be enclosed within an interval of 
length E/2n. Since we have 

2 4 8 
* On the ergodic dynamics of almost periodic systems, American Journal of Mathematics, vol. 

63,1941. For an introduction to the literature see Eberhard Hopf's "Ergodentheorie, " Ergebnisse der 
Mathematik und ihrer Grenzgebiete, Berlin, Springer, 1937. Our discussion here deals only with 
the "Ergodic Theorem," and not at all with the "Mean Ergodic Theorem" of von Neumann, which 
stimulated me to reconsider some old ideas, and so led me to the discovery and proof of the Ergodic 
Theorem, embodying a strong, precise result which, so far as I know, had never been hoped for. 
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it is evident that this set of rational points is of measure 0. 
More generally, if we have a set M such that it can be enclosed within a set 

of intervals of length 11, 12, * * * with 

1 + 12 + ?l+ 

while the complementary set M can be enclosed similarly within intervals 
1i, 12, with 

11 +12 +6 - ( 1+( 

for E>0 arbitrarily small, then M is said to be measureable of measure 1; and 
its complementary set M will then clearly be measurable of measure 1 -1. In 
this case the probability that a random point falls in M is obviously to be re- 
garded as 1. 

All ordinary infinite sets specifically defined by analytic methods are found 
to be measureable in this sense. 

The gist of the Ergodic Theorem can now be illustrated by means of our line 
segment. 

Suppose that there is given any one-to-one measure preserving transforma- 
tion T of the line segment 0 _x ? 1 into itself; T may have a finite or infinite, 
number of discontinuities. A first simple example is the following: Imagine the 
line segment 0 ? x < 1 bent into a circle of circumference 1, without any stretch- 
ing; the first transformation T is merely a rotation of this circle through a cer- 
tain angle a. A second example is the following: The line segment is divided 
into the infinite set of intervals, 

0~ ~~ <X<2;2-< X < 3 4 -< X < 8 <1; x<4 8 

and then the second interval is interchanged with the first, the fourth with the 
third, etc., thus defining the transformation T. In both cases T is evidently of 
the stated type, and measure is preserved. 

The Ergodic Theorem then says: For any such measure-preserving trans- 
formation T, and for each individual point P (except possibly an exceptional set of 
measure 0), there is a definite probability that its iterates under T, from P on, 
namely 

P, T(P), T2(P), *. and P, T-'(P), T-2(P),- 

fall in a given measurable set M. 
In other words the proportion of n of these points (beginning with P) which 

lie in the set M tends toward a definite limit i,u, as n approaches infinity in 
either direction. 

More generally, a line segment may be replaced by a finite volume M of 
n-dimensions, n > 1, and the points of M may be assigned a variable (integrable) 
positive weight, w(P). The generalized theorem would then assert that the cor- 
responding weighted means tend toward a limit ji,. In the simple special case 
first stated, this weight is 1 for the points of M and 0 for the points not in M. 
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224 WHAT IS THE ERGODIC THEOREM? [April, 

Or, again, for n> 1 the discrete trapsformation T may 'be replaced by a steady 
measure-preserving flow Tt in time t, and the analogous theorem holds. 

To illustrate this last possibility, suppose that in the square 0 <x <1, 
0< y <1, the points move with a uniform velocity in a fixed direction, making 
an angle a with that of the x axis, and leaving the square to return at the 
homologous point (see the adjoining figure). Evidently such a transformation 
Tt is area-preserving. Let now M be any selected measurable part of the square, 
and let P be any point of the square-aside always from a possible exceptional 

Y R 

FIG 1. 

set of measure 0. On the basis of the same theorem, there is a definite probability 
in infinite time, t> 0 or t < 0 that Pt = Tt(P) falls within M, and this probability 
is the same in both directions. More generally a weight w(P) may be introduced 
in the case of a "flow" as well as in the discrete case. 

In more analytic garb, the theorem states in the two cases respectively that 
forn-> To,T + oo: 

w(P) + w(T(P)) + . w(Tn-1(P)) T 

- 
pp; J 

~~~~~~~w(P)dP -->pz. 
T 

The kind of applications to dynamical systems which the Ergodic Theorem 
affords are exceedingly varied and interesting. Take the simple example of an 
idealized convex billiard table on which an idealized billiard ball P moves with 
velocity 1. In the figure let 4=arc OA, 01, =arc OA1, l=AP, l*=AA,. We have 
a transformation (01, 42) = T(6, ck) defined over a rectangle 

O < 0 < 7r; 0 < O _ p, (p = perimeter of table) 

in the 0+-plane, associated with the motion. It is not hard to prove that T is 
measure-preserving in the sense that the double integral 

sin 0 ff I dOdcp s te ssin 0 m 

has the same value when extended over any measurable part of this rectangle 
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as over its image under T; indeed it would be possible to deform the rectangle 
so that, over the new region, ordinary areas are preserved. 

Furthermore it is clear that, if we associate with any "state of motion" of 

At/X~~~~~A 

FIG. 2 

the billiard ball, as of P, the three coordinates 0, ci, I then a steady flow Tt is 
defined in the corresponding region of three-dimensional 061-space: 

O < 0 < i; O? < q < p, O -< I < I* 

in which the following volume integral is preserved: 

J( J sin O 

Thus the theorem applies to this flow. 
Here are three obvious applications to this simple but typical dyanamical 

problem: 
(1) the average length of n successive chords of the path tends to a definite 

limit, the same whether the time t increases or decreases; 
(2) the average angle 0 at n successive collisions tends to a definite limiting 

value; 
(3) the billiard ball tends in the limit to lie in any assigned area of the table 

a definite proportion of the time. 
There is one especially interesting case, which may in fact be the "general 

case" as far as we know: It may happen that all of the points of our volume be- 
have in essentially the same way in the mean (aside always from the excepted 
set of measure 0, of course). If they do not so behave, the underlying space can 
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be subdivided into invariant measurable sets; thus for an elliptical table, the 
motions lying wholly in the ring outside a smaller confocal ellipse form such a 
closed invariant set; and this is an integrable problem-a limiting case of 
geodesics on a flattening ellipsoid. 

What the Ergodic Theorem means, roughly speaking, is that for a discrete 
measure-preserving transformation or a measure-preserving flow of a finite 
volume, probabilities and weighted means tend toward limits when we start 
from a definite state P (not belonging to a possible exceptional set of measure 
0), and, furthermore, the limiting value is the same in both directions. 

The Ergodic Theorem applies to manifold deep problems of analysis and 
of applied mathematics-as well to the solar system as to our simple billiard 
ball problem! Thus in G. W. Hill's celebrated idealization of the earth-sun- 
moon problem (the restricted problem of three bodies) we can at once assert 
(with probability 1) that the moon possesses a true mean angular state of rota- 
tion about the earth (measured from the epoch), the same in both directions of 
the time. 

FOCAL CUBICS ASSOCIATED WITH FOUR POINTS IN A PLANE* 
M. G. BOYCE, Western Reserve University 

1. Introduction. Let A, B, C, D be distinct fixed points and Z a variable 
point, all in the same plane. The locus of Z such that the directed angles AZB 
and CZD are equal, or equal when reduced modulo r, will be referred to as the 
equal-angle locus with respect to the four points. Similarly, if the distance ratios 
AZ/BZ and CZ/DZ are equal, the locus of Z will be called the equal-ratio locus. 
Any ordered set of four points will be said to form an cdl-basis for a given curve 
if the curve is an equal-angle locus for the four points in that order, and an 
R-basis is defined in the corresponding manner. 

Each of the two loci just described has long been known to be a circular 
cubic which passes through its singular focus. Such a cubic is called a focal cubic, 
since it is the locus of the foci of the conics cut from a cone of second degree by 
a pencil of planes whose axis is tangent to the cone and perpendicular to a prin- 
cipal section. Quetelet initiated the study of these focal loci in his inaugural dis- 
sertation [Gand, 1819] on the case in which the cone is right circular. The focal 
curve is then identical with the oblique strophoid. Van Reest soon afterward dis- 
cussed the general case, Chasles and others followed with additional contribu- 
tions, and Teixeirat in 1908 included a rather comprehensive treatment of focal 
cubics in his treatise on special curves. 

* A preliminary report on this paper was presented to the Ohio Section of the Mathematical 
Association of America, April 8, 1939. 

t K. Van Rees, Memoire sur les focales, Correspondance mathematique et physique de A. 
Quetelet, vol. 5, Brussels, 1829, pp. 361-378. 

t F. Gomes Teixeira, Traite des Courbes Speciales Remarquables, vol. 1, Coymbre, 1908, pp. 
45-58. 
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