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Oscillations in nature: span many space & time scales 
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Time-scale 

Circadian rhythm Locomotion gait patterns 

Intracellular oscillations 

Insulin release oscillations 

Brain activity oscillations 



Collective ordering of spatially distributed 

oscillators is ubiquitous in nature 

• Pacemaker cells in the heart 

• -cells in the pancreas 

• Long-range synch across brain during 

perception 

• Contractions in the pregnant uterus 

• Rhythmic applause 

• Pedestrians on a bridge falling in step 

with the swinging motion of bridge 

 

Male Fireflies flashing in unison 

Each insect has its own rhythm – but the phase alters 

based on seeing its neighbors lights, bringing harmony 



… and vital for the proper functioning of 

many biological systems 

Yamaguchi et al., Science, 302,1408 (2003) 

Incoherent 

Coherent 

Cellular clocks (day-night cycle) 

Examples: 

Synchrony in the Brain during 

perceptual ―binding‖ 

40 Hz oscillations  

Quorum sensing (synchrony triggered by 

supra-threshold cell density) 

http://mpkb.org/ 



Christiaan Huygens 

(1629-1695) 

Synchronization of 

Coupled Oscillators 

Feb 1665: Huygens observed phase-

locking between two pendulum clocks 

hung side by side 

In-phase 

Anti-phase 





 

Changing variables 

Limit cycle in phase space 

Consider many ‗phase oscillators‘ : 

The coupled system: 

Assumption:  Rapid convergence to limit cycle attractor 

( i=1,2,…,N >>1 ) 

Coupled Phase Oscillators 

d/dt =  

di / dt = i 

di / dt = i  + N
j=1 kij ( j – i )  

kii = 0,  kij (  ) = kij (   2) 

described only by their 

phase  

frequency 
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• Assumes sinusoidal all-to-all coupling. 

 

• Macroscopic coherence in the system is 

characterized by the order parameter: 
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n = 1, 2, …., N      k = (coupling constant) 

Kuramoto model (1975):   kij (  ) = k sin  

Global 

coupling 

Yoshiki Kuramoto 

(1940 -  ) 
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Measuring coherence of 

oscillations in the system 



With increasing strength of coupling (k), a transition 

to coherence (r >0) at a critical value of k  

ck

r 

k

Incoherence 

Synchronization 

g(0) 

g() 

 

Synchronization-desynchronization transition 

kc = 2 / g(0) N  



Coupled Phase Oscillators on a Lattice 

In the presence of disorder, no global 

coherence – but long-range 

correlations still exist  

 

Phase defects self-organize into 

clockwise and counter-clockwise 

rotating spiral waves  

From the vector-field flow diagram of 

the phases it is clear that 

Clockwise spirals: vortex 

Anti-clockwise spirals: anti-vortex 

 

Pairs of vortex-antivortex coalesce 

(annihilate) preserving net topological 

charge  



Can we use these ideas to understand 

synchronization-desynchronization transitions in 

chemical or biological complex systems where the 

individual elements are oscillating ? 

Biologically motivated interactions may lead to 

surprising outcomes, such as, synchronization giving 

way to de-synchronization with increased coupling 

Pattern formation through interactions 

between oscillators 



The Macaque Brain 
Brain image: vision.ucsf.edu 

Collective dynamics of a network of brain regions 

Colors represent modules 

CoCoMac :  

links between areas 

of macaque brain 

(Revised from Modha & Singh, 2010) 



Sub-population of 

excitatory neurons 

Sub-population 

of inhibitory 

neurons 

E.g., AMPA 

or NMDA 

E.g., 

GABA 

Modeling Dynamics of a Local Brain Region 

u 

v 

u du/dt =  – u + (1 – u) S (wuu u – wuv v + Iu
ext)  

u: fraction of active excitatory 

neurons 

v: fraction of active inhibitory 

neurons 

S: input-output function, usually of 

sigmoidal nature 

v dv/dt =  – v + (1 – v) S (wvu u – wvv v + Iv
ext) 



Sub-population of 

excitatory neurons 

Sub-population 

of inhibitory 

neurons 

E.g., AMPA 

or NMDA 

E.g., 

GABA 

Modeling Dynamics of a Local Brain Region 

Wilson-Cowan Model 

u 

v 

Phenomenological description of 

activity in a system of coupled 

subpopulations of excitatory & 

inhibitory neurons 



Collective Dynamics of Brain Networks 

Each of the N nodes of the 

Macaque cortico-cortical network 

is modeled by the Wilson-Cowan 

oscillator 

Resulting time-series of node activity are 

qualitatively similar to experimentally 

recorded activity in Macaque brain regions 

Increasing connection strength  

Parameters of WC model 

chosen so that each isolated 

node has limit cycle dynamics: 

Relaxation oscillations 



 Observed Patterns = Network + Dynamics  

To understand better the 

genesis of the different 

spatio-temporal patterns in 

the network of Macaque 

brain regions, we can 

separately analyze the 

contributions of the  

(a) brain-region dynamics and  

(b) network organization  

For (a), we study the 

dynamics of N globally 

coupled WC oscillators as 

a function of coupling 

Spontaneously 
broken symmetry 



Several observed dynamical 

patterns can be understood 

in terms of bifurcations in 

the global dynamics of a 

simple system of coupled 

―brain-region‖ oscillators  

Analysis: 

Contribution 

of Dynamics 

ES: exact synchronization 

QP: quasiperiodicity 

APS: anti-phase synch 

IIS: Inhomogeneous  

in-phase synchronization 

ES QP 

APS 

IIS 

ES movie APS movie 

../../neuro/pair/wilson_cowan/paper/Movie1_N_2__ES.avi
../../neuro/pair/wilson_cowan/paper/Movie3_N_2__APS.avi


Many of the qualitative patterns seen in brain networks can be 

explained from the collective dynamics of coupled oscillators having 

activity like brain regions 

 

In particular, suggests a relation between 

• anaesthetic-induced loss of consciousness occurs through progressive 

disruption of communication between brain areas  weaker 

interactions  

    L. D. Lewis et al., PNAS 109, E3377 (2012). 
• functional connectivity networks reconstructed from EEG data become 

increasingly dense with the development of fatigue in sleep-deprived 

subjects  increased synchronization 

    S. Kar et al., Clin. Neurophysiol. 122, 966 (2011) 

Although it may appear counter-intuitive that decreased coupling strength 

results in increased synchronization, our findings show that these results are 

not incompatible. 



Decreased coupling between different brain regions 

can be responsible for the higher connectivity 

observed in functional brain networks 

reconstructed from EEG recordings 

Fatigue or anaesthetic induced effects  decrease in 

effective coupling strength w between cortical regions 

Networks constructed from cross-correlations 

between activity in different brain regions 

essentially 

measure this decreased 

communication between 

the regions brought 

about by weakened 

coupling 

Network becomes 

increasingly sparse with 

increasing w as dynamics 

of different nodes 

become more 

desynchronized 



What is the contribution of the 

network structure ? 

A reduction of just 2 links per node causes the 

trajectory in the IIS state to split into many 

more (∼ N) projections than seen for the fully 

connected case (∼ 2). 

Dramatic quantitative reduction 

in the area of parameter space 

corresponding to Oscillator 

Death even with the reduction of 

one link per node. 

Surprising: one would expect that 

a marginal deviation from the 

global coupling limit in large 

systems will not result in a 

perceptible change from the 

mean-field behavior. 

../../neuro/pair/wilson_cowan/paper/supplementary/Movie8_marginally_sparse_N_21_k_18__IIS.avi


The divergence of phase space trajectories of different local 

regions of the Macaque cortical network at higher 

connection strengths is related to the density of incoming 

connections 

Analysis: Contribution of Nodal Degree 

―Frustrated synchronization‖ Many systems trying to simultaneously 

synchronize another result in conflict, 

―frustrating‖ each other through competition 

Sinha 1997 



But 

Could  the different synchronization patterns 

observed be simply a product of the specific type of 

nonlinear interaction between WC oscillators ? 

 

Arrays of coupled chemical relaxation oscillators 

with lateral inhibition provide a fascinating glimpse 

into the variety of collective ordering phenomena 

that are possible 

In general what kind of patterns can arise as a result 

of interactions between neighboring oscillating 

elements in a lattice ?  



The magnificent patterns 

of Alan Turing 

How to explain the development of patterns arising spontaneously in nature ? 

A. Turing 

The Chemical Basis of Morpogenesis 

Phil. Trans. Roy. Soc. Lond. B 237 (1952) 37 



Morphogenesis by lateral inhibition 
Morphogenesis,  development of shape or form in plants 

and animals explained using reaction-diffusion model 

systems  of two substances with concentrations u1, u2 

 Activator u1: stimulates increase in 

concentration of both chemicals  

 Inhibitor u2: leads to a decrease in 

concentration of activator  

 Turing: such a system can produce 

stationary pattern through spontaneous 

symmetry-breaking if inhibitor diffuses 

much faster than activator : Local 

activation with lateral inhibition  

 

Activator  

u1 

Inhibitor 

u2 

 

+ 

 

 

| 

 

+ 



Turing‘s analogy: 

Missionaries vs. Cannibals 

An island populated by 

(i) cannibals & (ii) missionaries.  

• Missionaries [inhibitors] 

•are all celibate  

•depend on recruiting to maintain their population as 

members gradually die.  

•Cannibals [activators] 

•also die,  

•but can reproduce, increasing their population. 

•When two missionaries meet a cannibal, (s)he is 

converted to missionary status 

When both populations mixed together,  stable balance 

reached between reproduction & conversion.  

 

If disturbed by a small amount of noise, the system 

returns to balanced state. 
Turing Archive 



Pattern formation via diffusive instability 
Missionaries (on cycles) vs. Cannibals (on foot) 

Now introduce space in the model: 

• consider the populations to be 

spread out in a thin ring around the 

narrow beach of the island,  

• individuals interact only with their 

nearest neighbors 

• while diffusing at random http://www.swintons.net/deodands/ 

 Instability in system:  

if there is at any point a small excess of cannibals  

 excess 'production' of more cannibals  

 more missionaries  

(as more targets for conversion).  

 

Without diffusion, extra missionaries reduce cannibal excess, system returns to 

balance.  

But with diffusion, missionary excess transported away faster  a pattern 

develops with cannibal excess in center and excess missionaries at edge.  

But the missionaries have bicycles and move faster 



Typical patterns of 2-Dimensional Turing 

reaction-diffusion system 

Stripes Spots 



E.g., Orientations columns in the visual cortex 

G J Goodhill, Neuron (2007) 

In general, 

the concept of lateral inhibition can give rise 

to a variety of patterns… 



Lateral Inhibition with Oscillators 
Goodwin: Development of patterns arising from 

coupled biochemical oscillators ? 

In many biological systems, the individual entities 

undergo periodic oscillations instead of remaining 

in a constant state 

Intracellular oscillations Insulin release oscillations Neuronal activity oscillations 

What will happen if we allow these oscillators to have activating-

inhibiting diffusive interactions with each other ? 

Brian C. Goodwin (1931–2009) 

Image source: 

Wikipedia 



A family of oscillating homogeneous chemical reactions 

B P Belousov (1951)  Investigated a solution of bromate, 

citric acid (the reductant) and ceric ions (the catalyst) 

 

Instead of monotonic conversion of yellow Ce4+ (reduced) to 

colorless Ce3+ (oxidized), saw periodic oscillations of the 

color 

A M Zhabotinskii (1961+)  Established the validity of 

Belousov‘s results – showed the phenomenon to be robust 

Boris P. Belousov 

A. M. Zhabotinskii 

Example: Chemical oscillators e.g. B-Z reaction 

2Ce3++BrO3
-+3H+           2Ce4++2HBrO2+H2O 



Spatial patterns in the BZ 

reaction 

Target and Spiral waves 

x/t = F (x,y) + Dx 
2 x 

y/t = G(x,y) + Dy 
2 y 

Introducing spatial interactions 

through diffusion 

Typical experimental records 

from (a) Pt electrode and (b) Br 

ion sensitive  electrode for BZ 

reaction 

BZ oscillations 



Array of coupled chemical 

oscillators: Experiments 

Beads containing BZ 

reactive solution 

suspended in a 

chemically inert 

medium that allows 

passage of only 

inhibitory chemical 

species 

Recent experiments on microfluidic device 

show (i) anti-phase synch and (ii) spatially 

inhomogeneous time-invariant patterns  

Anti-phase 

synchronization 

Time-invariant 

spatial pattern 



The model 
Array of coupled relaxation oscillators with passive elements at boundaries  

Individual oscillators described by 

a modified Van der Pol model 

 

b: measure of asymmetry of the 

oscillator (ratio of times spent at 

high-u branch to low-u branch) 

Oscillators diffusively coupled via 

inactivation variable v 

: strength of coupling betn 

neighboring oscillators 

Coupling 

Boundry condn: periodic, 1 coupled to N to complete a ring 

Nodal dynamics 



Variety of collective dynamical activity 

ES              APS             SPOD           CS 

Synchronized 

Oscillations 

Anti-Phase 

Synchronization 
Spatially Patterned 

Oscillation Death 

Chimera 

State 



Basins of attraction of different spatio-temporal 

Dynamical regimes of a 1-D array 

of coupled relaxation oscillators 

(N = 20) showing regions where 

the majority (>50%) of initial 

conditions result in SO, APS, 

SPOD or CS 

patterns in coupling-

asymmetry space 

Spatiotemporal evolution of a 

ring of N = 20 relaxation 

oscillators, each coupled 

diffusively to their nearest 

neighbors through the 

inactivation variable. 
Moving defects 



Patterns in 2 dimensions 

Chimera state  

Line dislocations, 

―Glider-like‖ pattern 

Spiral waves 

Spiral waves on an APS background 

Dynamical regimes of a 2-D array of 

coupled relaxation oscillators 

showing regions where the majority 

(>50%) of initial conditions result in 

SO, APS, SPOD or CS 



In both 1D and 2D, if the parameters lie on the border between the regimes 

corresponding to SO/CS and SPOD, we see behavior analogous to coarsening 

―Coarsening‖ 

1D ring: the system converges 

to either SO or SPOD depending 

on the initial condition. 

2D lattice: the system converges 

to SO, SPOD, or line defects 

depending on initial conditions 



dx/dt = F(x,y) = r  x [1–(x / K)]– q y [x / (b+x)] 

dy/dt = G(x,y) = – d y +  q y [x / (b+x)] 

Similar spatiotemporal patterns can be seen in 

Example: ecological oscillators 
Rosenzweig-MacArthur Predator-Prey Model 

Predator-Prey model with Holling Type 2 (hyperbolic) functional response 

 Prey (x) – Predator (y) eqns 

B(x) 

x 

B(x) 

x 

B(x) 

x 

Functional response of predation to prey density (Holling, 1959) 

          Type 1                        Type 2                         Type 3 

Gives rise to limit cycle oscillations 



x/t = r  x [1–(x / K)]– q y [x / (b+x)] + Dx 
2 x 

y/t = – d y +  q y [x / (b+x)] + Dy 
2 y 

Assuming only predators can move 

Dx = 0,  Dy = D 

Predator-Prey on a lattice:  
Allowing diffusive spreading of only the predator species 

In many real predator-prey systems movement of only predator 

species is significant (e.g., phytoplankton-zooplankton) 

Increasing D results in a variety of patterns including 

spiral waves and temporally invariant spatially 

heterogeneous structures 



Prey Predator 

D=0.01 

D=0.1 



Explaining anti-phase oscillations 

To understand the origin of antiphase oscillations, consider  

(a) the relaxation limit 

(b) extreme asymmetry, i.e., system spends entire time in slow segment of limit 

cycle – the remaining segment of the cycle being traversed extremely fast 

The system reduces to 1-D dynamical system 

x: parametrizes slow part of limit cycle, redefined to belong to (0,1) 

The model can be exactly solved if            is a constant  

but geometrical argument valid for any arbitrary +ve definite function 

defined over (0,1). 

By appropriate choice of time scale set the period 

Limit cycle behavior for oscillators in the relaxation 

limit and extreme asymmetry 



Anti-phase behavior in pair of coupled oscillators  

A system of two such diffusively coupled oscillators can be described by 

Time series of two coupled 

oscillators in relaxation limit 

and extreme asymmetry 

Given the values of x1,x2 at some arbitrary initial time t’ , the solution at a later 

time t: 

till time t’’  when max(x1,x2) reaches x = 1. After this, the larger of (x1,x2) is 

mapped back to x = 0 (because of the instantaneous nature of the remaining 

segment of the limit cycle) and t’  is replaced by t’’. 

This allows a Poincare map P(x) to be constructed. 



Anti-phase oscillations: Poincare map 

Poincare map for 2 coupled 

oscillators for different couplings 

D showing stable APS and 

unstable SO 

Poincare map P(x) is constructed in two steps 

 

(a) If x1 starts at 0 and x2 starts at some point 

0 < x < 1, find location of x1[=f (x)] at some 

time t when x2 = 1 (which is then immediately 

mapped to x2 = 0). 

(b) Starting with x2=0 and x1=f (x), when 

x1 = 1find the location of x2: x = f [f (x)]=P(x). 

 

Solving the system of 2 coupled oscillators 

with appropriate initial conditions, 

 

 

where W( ) is the Lambert W function 

The Poincare map has one stable (APS) and one unstable (SO) fixed point. 

Thus APS is the only stable state! 

Relaxing the extremal conditions under which this was derived may allow a 

stable SO state to coexist with the stable APS state. 



Oscillator death states at high values of coupling 

Phase-plane diagram indicating 

general mechanism for oscillator 

death for 2 coupled oscillators. 

To understand genesis of SPOD at 

strong coupling, focus on a pair of 

oscillators in relaxation limit 

 
The parameter b chosen such that  

v nullcline is placed symmetrically 

between two branches of u-nullcline 

with oscillator taking equal time to 

traverse each branch 

When the two oscillators (1 and 2) are in 

opposite branches, the two opposing forces 

acting on each oscillator,  

(i) the coupling [Fd = Dv(v2 − v1)] and  

(ii) the intrinsic kinetics (Fn),  

can exactly cancel when coupling is strong 

 oscillator death. 

Symmetry ensures that the force due to the intrinsic kinetics for the two 

oscillators is identical in magnitude but oppositely directed in the steady state.  



Chimera states arise through competition  

At intermediate values of coupling in large arrays, the competition 

of the oscillator death inducing mechanism with the intrinsic 

oscillatory dynamics dominant at low coupling, may give rise to 

chimera states. 

Remarkable! system exhibits a heterogeneous dynamical state 

in spite of the bulk being homogeneous. 

Not dependent on boundary conditions –  aseen with 

periodic as well as no-flux boundary conditions. 

 

Chimera: comprises regions with dynamically distinct behavior, 

as opposed to its recent usage referring to the co-occurrence 

of coherent and noncoherent domains 



Propagating defects in 1D and 2D systems 

Attractors having point-like ―phase defects‖ (i.e., with a 

discontinuity of phase along the oscillator array at this point), 

moving in the background of system-wide oscillations. 

After initial 

transients defects 

move in medium 

with interactions 

between two such 

entities resulting in 

(a) the two being 

deflected in 

opposite directions, 

or  

(b) either both or 

only one getting 

annihilated. 

One-dimensional system Two-dimensional system 

“Gliders” ? 

Movie: colliding gliders 

Movie: propagating gliders 

rajeev movies/colliding_gliders.avi
rajeev movies/two_horizontal_gliders.avi


―Bubbles flowing through narrow channels can be encoded with information and 

made to perform logic operations like those in computer.‖ — J Epstein (2007) 

―Can Droplets and Bubbles Think?‖ 

Possible implementation of chemical 

computation ? 

Moving defects resemble gliders in 

cellular automata 



Computing in the 

SPOD regime 

Applying a local perturbation 

to specific oscillators (rows) 

results in a different 

configuration of high and low 

values that can be interpreted 

as the output binary string. 

Perturbation: stimulating the 

inactivation component of 6 

oscillators (rows 3, 7, 9, 11, 15 and 

17, counting from top) for a short 

duration 

Functionally similar to NOT gate 

Example: a computation that 

transforms the input sequence 

(10)10 to 10(001)201(001)30. 



Computing as Transitions between 

Dynamical States 

Not all possible 2N states 

representing the distinct 

combinations of N elements 

arrested in high and low 

activity are stable in the 

SPOD regime  

Only states having at most 2 

consecutive 0s & 1s allowed 

 Fibonacci sequence 

Mapping how perturbations 

(inputs) of one or more 

elements in a given state 

yields another state (output) 

 State transition diagram 

(computation) 



Pattern formation 

Universal computation 

& Turing Machines 

Linking the two enduring legacies of Turing 



•Oscillations are not curiosities, but occur widely across nature – 

especially in the biological context 

 

• Spatial and temporal patterns indicators of far-from-equilibrium 

condition  

 

• Often characterized by spontaneously broken symmetries 

 

• By understanding the physics of pattern formation in such 

systems, we can come up with 

• possibility of chemical computers and  

• successful methods of controlling such patterns in health & 

disease 

Outlook 
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