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Qutline

* Background: Systemic Risk and the dynamical systems
approach to Ecosystem stability

e Characterization of Inter-bank network from bilateral
exposure data of US and European banks

* Investigating heterogeneity & modularity of the network

* The dynamics of cascading failures: local & global
stability

* From network topology to dynamics: using structural
measures to identify critical nodes

* Global failure: possible role of liquidity crisis ?



Financial Markets are Complex Systems !

Summmn "-"'E"Efa" I&ﬂsuhishi UFJ .
Royal Bank Scotland oLlnydﬁ TSB Netwo rk Of malor
( ‘II'| OHBDS L L) ° L]
omsmregt B0t =L R financial Institutions
Bear Stearns . n . o e .
réeen-Sanproil / S okdman Sane _. High connectivity in terms of
/ v | e ING - i
tes g P \ @ mutual share hc?ldlngs and closed
Aberdeen @) s.mlsmmaa I loops = strong inter-dependence
i rga o e Commerzbank
; | \ Capital Group :
Mediobanca ) — @ = ; 3
7 | . - ;
I|I FMR Corp ‘ ¢ Unicredito ! "1.5:,_;-.:"‘-\‘ I:ft;"' \ ,-"*. ®
Sumitomomitsui ) N Illk OK : HSBC e AN <
Friends Provident i) 2 J:::u - @ Barclays A
Fidelity Mng.o Cr.Suisse . = o Chas& °EII"'IP Paribas o f:;:
- i
IF 0 \ 0N'I!ler'l‘luﬁl .,.' -- & ] .. éﬁ
Deutsche Bank _‘oweuingm Mng. P ¥ .:g N e
Franklin Res. Merrill Lynch :, ,: i :_ E i —\;.
F Schweitzer et al, Science, 2009 o | '
S B

“Core” of 66 banks accounts for 75% of

daily transactions in value (900 billion US$) [e:
— subset of 25 banks fully connected !

K Soramaki



Was the recent worldwide financial crisis a
disaster just waiting to happen ?

Systemic Risk (of collapse of entire financial system) =
Network susceptibility to small perturbations resulting
in a cascading process due to excessive connectivity ?

Complex markets are unstable

As the interaction between agents increase in complexity
* the connection density increases, and/or the
* interactions become stronger,

the system almost certainly becomes unstable.
follows from May-Wigner Theorem

Complexity — Instability in Networks



Stability of large networks:

State of the network of N nodes: x = (x; ,X,,..., Xy)»
x; : state of the it" node.
Time evolution of x is given by a set of equationsd x, /dt=f (x) (i=1,2,...,N)

Fixed point equilibrium: x%=(x° ,x?9, ..., x9%,) such that f(x°) =0

Local stability of x © : Linearizing about the eqlbm: dx = x — x ©
dox/dt=A0x where Jacobian A:A;=df/dx|

x=x0

Long time behavior of &x dominated by A
| 8% | ~ exp (A

a (Iargest real part of the eigenvalues of A)

The equilibrium x = x 0 is stable if L__ < O.
What is the probability that for a network, A < 0?

Each node is independently stable = diagonal elements of A < 0 (choose A .. = -I).

Let A=B -1 where B is a matrix with diagonal elements 0 and | is N XN identity matrix.

For matrix B, the question: What is the probability that A’ < I ?



Applying Random Matrix Theory:

Simplest approximation: no particular structure in the matrix B,

i.e., B is a random matrix.
B has connectance C, i.e,, B ; = 0 with probability | - C.

Non-zero elements: i.i.d. random variables from Normal (0, 62) distribution.
For large N, Wigner’s theorem for random matrices apply.

Largest real part of the eigenvalues of Bis ' = V(N C 6?).
For eigenvalues of A: A=A - |

max

For large N, probability of stability — 0 if V(N C 62) > I,
while, the system is almost surely stable if V(N C 62 ) < |.

Large systems exhibit sharp transition from stable to unstable behavior when N
or C or 02 exceeds a critical value.

= Complexity — Instability



Criticism of May-Wigner theorem:
Complexity — Instability

1 Assumes random network of interactions
(although the most real-world networks clearly are
structured)

Solution: Consider networks which have structures
(patterns) in the arrangement of their interactions

(1 Based on linear stability (does not take into
account periodic or chaotic dynamics of nodes)
Solution: Consider global stability in a system having
nodes with a rich variety of dynamical behavior



A Fresh look at Complexity — Instability

1 Consider networks which have structures in the arrangement of
their interactions

Small-world connectivity: SS, Physica A, 2005

Modular organization: R. K. Pan and SS, PRE Rapid, 2007
Hierarchical modular connectivity: R. K. Pan and SS, Pramana, 2008
Scale-free degree distribution: M. Brede and SS, arxiv preprint

 Consider networks with full dynamics (fixed point, oscillatory,

chaotic) at each node
SS and Sudeshna Sinha, Phys Rev E, 2005
SS and Sudeshna Sinha, Phys Rev E, 2006

Introducing complex structures or complex
dynamics on networks does NOT change basic result
of May: increased complexity promotes instability.



Example: small-world networks
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Watts and Strogatz (1998): Many biological, technological and social networks

have connection topologies that lie between the two extremes of completely
regular and completely random.

Question:

Does WS small-world topology affect stability of a network ?
Answer: NO! (ss 2005)



Stability-instability transition in Small-World

Probability of stability in a network Networks
Finite size scaling: N = 200, 400, 800 and 1000. (SS, 2005)
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Dynamics on Networks

Nodes may have non-trivial dynamics

Introduce explicit dynamics at the nodes :

X (n+1) =F(X (n))

What happens when such nodes are coupled together to
form a sparsely connected network ?
Activity at a node may stop as a result of

interactions



Dynamics of network nodes : X (n+1) = F( X (n))

(Sinha & Sinha, 2005)

Example: Discrete exponential logistic growth model

Xn+| =Xnexp [I’( | _Xn)]
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Xi (n+1) = F( Xi (n) [1+Z Jij Xj ()] )
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5A node is extinct if 2 Jij Xj < -1

Question: How many nodes survive asymptotically ?
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Dynamical Systems — Finance

Can these results be used to understand the
possibility of systemic risk in financial systems !

Example: cascading defaults propagating along a
network of inter-bank relations

For this we reconstruct and analyze a network of
bilateral exposures between banks (US &
European)



Data

Federal Deposit Insurance Corporation (FDIC) Call Report
2008 4t quarter

204 x 204 matrix : 202 European and US banks & financial institutions +
aggregation of all Insurance companies + exposure to all banks outside Europe
and USA considered together

Rows are gross negative fair value, i.e., market valued obligation from row
bank to column bank

Morgan Deutsche

|PMORGAN BoA Stanley Bank Credit Suisse CITIBANK
JPMORGAN 0 222913336 138.374 129.276 109.635 105.287
BoA 221.42 0 124.155 116.339 104.958 100.795
Morgan Stanley 126.661 122.075497 0 70.7962 60.0402 57.6591
Deutsche Bank 118.784 114.4837229 71.0663 0 56.3063 54.0734
Credit Suisse 105.095 101.29062 | 62.8766 58.7422 0 47 .842
CITIBANK 95.8675 92.39670082 57.3556 53.5843 45.4433 0

Units: Billions of dollars



Constructing the network of bilateral exposures

0 2229
221.42 0
126.66 122.08
B =| 1878 11448

105.10 101.29
95.87 92.40

138.37 129.28 109.64 105.29 ...
124.15 116.34 104.96 100.80 ...

0 7080 6004 57.66...
71.07 0 5631 5407...
62.88 58.74 0 4784 ...

5736 53.58 4544 0...

C = B — BT : antisymmetric matrix of net amounts borrowed/lent

C;; > 0 is net borrowing by node i from node

C; = - C; is corresponding amount lent by j to |
Considering only matrix of +ve values, i.e, J; = C; if C; >0, /;= 0 otherwise
we obtain the weighted adjacency matrix for the directed network

0
0
0
0
0
0

1.49 11.71 1049 454 942 ...
0 208 186 3.67 840...

0

0 0.27 0 0

0 284 244 0 240...
0 0

0 0 0 030...
049 ...

0 0

links point from the
borrower to the
lender (the direction
of contagion)
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Weighted & directed - i
network of bilateral

CDF, P_(J,)

exposures
| 6 nodes isolated 3 1o 1
Largest connected component of &0 |
|86 nodes considered :
Financial institutions ordered acc to ' o0
Tier | capital (decreasing order) 120
11e-3
10" 40 B0 80 100 120 140 160 180
Billions of US$
Apart from a group of strongly
- interacting nodes, the matrix is sparsely
10 ¢ i i
occupied: most nodes have few links
to/from other nodes (majority of them
with the strongly co-interacting group)
103 ] I I I 2

- -4 -2 0
10 10 10 10 10" Distribution of netted bilateral exposures
Netted Bilateral Exposure, Jij



Weighted & directed Interaction among Top |5% (28 banks)

network of bilateral = 10

exposures 5 N
0.1

| 6 nodes isolated 10

Largest connected 14
component of 186 nodes
considered

- 10.01

22
0.001

Financial institutions 26
ordered acc to Tier | > 8 10 14 18 22
capital (decreasing order)

26 Billions of US$
Suggests core-periphery organization
* Few banks having high Tier | capital (core) have many & strong

connections with each other
* Other banks (periphery) connect to one or few of these banks



Structural characterization of the network

T 20 TANUARY 2011 | VOL 469 | NATURE | 351
_.|
A

doi:10.1038/nature09659

Systemic risk in banking ecosystems

Andrew G. Haldane' & Robert M. May”

“From a public policy perspective, two topological features are the key.
First, diversity across the financial system... homogeneity bred fragility. ...
Second, modularity within the financial system... Modular configurations
prevent contagion infecting the whole network in the event of nodal failure.”

Does the inter-bank network show evidence of

* Heterogeneity, e.g., in terms of strength, degree, tier-|
capital, exposures, etc. !

* Modularity ?



Strength distribution

In-strength s, (j )=2, J;; : Total net amount lent by j to all nodes

Out-strength s, (i )=2, J; : Total net amount borrowed by i from all nodes

2| nodes have no in-strength: only net borrowing

36 nodes have no out-strength: only net lending
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CDF, P_(k ), P_(k .)

Unweighted adjacency matrix A:
A= LifJ; > 0; A=0 if ;=0
In-degree k;, (j)=2; A, : Total number of nodes lent to by |

Degree distribution

Out-degree k. (i )=2; A; : Total number of nodes i has borrowed from

129 nodes have both in-degree and out-degree
21 nodes have no in-degree & 36 nodes have
no out-degree

Nodes with high in-degree also have
high out-degree

Corr coeff r =0.88 (p = 0)
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Tier | Capital

Measure of financial strength of a bank or

financial institution used by regulators

Core capital consisting primarily of common

stock & disclosed reserves
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Measuring modularity __
How to quantify the degree of modularity ? / ?{QC\}(;
One suggested measure: |

1 kik;
0=77) |4
i

f}t.l.ﬂ..f, (Newman, EPJB, 2004)

4;;
] EL

A: Adjacency matrix

L : Total number of links

k.: degree of i-th node

c;: label of module to which i-th node belongs

For directed & weighted networks:

lI'IEIl:]llt
W E : 58| : ,
O W Wij N Oc;c; (LY = >_ijWi )

W: Welght matrlx
s, : strength of i-th node

Modules determined through a generalization of the
spectral method (Leicht & Newman, 2008)



Measuring modularity: explicit algorithm

We first define a modularity matrix B,

gin gout

Bjj= Wi ‘IL‘ I:fi

To split the network into modules,

* the eigenvectors corresponding to the largest positive eigenvalue of the
symmetric matrix (B + BT) is calculated

* the communities are assigned based on the sign of the elements of the
eigenvector.

* This divides the network into two parts, which is refined further by
exchanging the module membership of each node in turn if it results in an
increase in the modularity.

* The process is then repeated by splitting each of the two divisions into
further subdivisions.

* This recursive bisection of the network is carried out until no further
increase of Q is possible.



Measuring modularity: weighted & unweighted

matrices

QW=10.14

- 0.1

- H0.01

- ~0.001

0.0001

1e-005

2 modules: A has 8 nodes, B
has 178 nodes

120 F

140 F

160

180 F"

100 |

Q=038

.......................................................................................

2:] 4:] :51] B::I 1I:IIEI: 12IEI :1f;fli-l : :1E.EI. ”“IéEI
13 modules
Largest : 54 nodes - contains top
|0% of nodes in terms of Tier |
capital except one (JPMorgan)
Smallest : 3 nodes



\)@ Modularity: Top 10 % of Banks in
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Module |
Module Il

Module Il
Module IV
Module V
Module VI
Module VII
Module Vi
Module IX

Modular organization of the unweighted
network
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How to identify critical nodes
using structural measures !

* Backbone extraction
* Eigenvector Centrality
* k-Core analysis



Patterns of dominant
flow in a2 network:
Backbone extraction

Example: International

Trade Network
Serrano et al, JEIC 2007
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Idea: To reduce the number of
links by retaining only the “most
important” ones obtained by
comparison with a null model
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Backbone-reduction on Banking-NW

|dentifying important nodes by
Backbone reduction 80

* The probability o of each link to occur in g 60

a random network is computed & 4ol

* If a < @, a pre-specified threshold, the . — _

link is retained 20 - y %o total weight, W

% nb of nodes, N
% nb of links, E

0 0.2 0.4 0.6 0.8 1
&y - Significance level

Bank network backbone for o= 0.1



Eigenvector Centrality

A variant is used in the Page Ranking algorithm used by Google

Centrality: a measure of the relative importance of a node
within a network

Eigenvector centrality

Based on the idea that the centrality x, of a node should be proportional to
the sum of the centralities of the neighbors

- T
l . .
T = — E Az A is a constant
}\ . - N
J=1

The vector x, containing centrality values of all nodes is obtained by solving
the eigenvalue equation Ax = Ax
and selecting the eigenvector corresponding to the largest eigenvalue

Positive values for the centralities are guaranteed by Perron-Frobenius thm:
The eigenvector of the largest eigenvalue of a non-negative matrix A has only
positive components.



Core-periphery organization

Core characterized by a central group of
nodes that are densely/strongly
connected to each other as well as to
other nodes (in the periphery) which
N have very few links

----------
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k-core is the largest subnetwork that
contains only nodes with degree = k.

The core number of a node is the
largest k-value for which the node is
still part of k-core.

PERIPHERY

k-core is obtained computationally by
recursively removing all nodes with
degree < k.



k-Core: Undirected & Directed

can be generalized to weighted networks (s-core)

U In-degree 2-CORE Out-degree 2-CORE



Comparing results

Comparison of importance-measures
Ty The most important nodes

Tareentaly | (eg., the top 10%) according

o 0.8 Alpha Backbone to the three different

2 " measures are not identical

.

e 06 Overlap between the three measures

5 computed by Jaccard index

% 0.4 J(a,b) =[anb]/[au b]

£ E K B

< 0.2 - E, EV centrality I 0.63 0.39

- K. Core number 0.63 I 0.38
L B. Backbone-reduction | 0.39 0.38 1
0 50 100 150

Rank of bank ) o
Eigenvector centrality is the best

indicator in terms of structural
measures for local and global
stability

Shaded region marks top 10 % for each measure



Dynamical model for failure propagation

Assumption: Let state of each node (bank/financial institution) S. at
any time be described by a binary variable

* S, (t) = |: “Healthy” or Solvent state

* S, (t) = 0: “Sick™ or Defaulted state [= S,(T) = 0 for all T > t]

The netted bilateral exposures J; (how much i owes j) describes
interactions between nodes

In the event of a node defaulting, all its creditors lose the net sum lent J;
If the loss of any neighboring node > critical fraction q of Tier | capital, the
neighboring nodes also defaults

Dynamical evolution of the states occurs as:

S (tt)=1-F{2J; [ -S®] +q.Cq ()}

where F(z)=1 if z > 0 ;F(z) = 0 otherwise



Condition of Stability

Dynamical evolution of state of a bank:
S(t)=1-F{% ;[ -S®] +q.Cq }

where F(z)=1 if z > 0 ;F(z) = 0 otherwise

If only a single node j defaults, the perturbation will propagate to its

neighbors i only if 10’
.lji ICri(i)) > q
G107 b

Thus, the distribution of ~_ pHmmmmmmininiiaion
netted bilateral exposures . | Assuming q = 0.06
scaled by Tier | capital W 4g2| . the shaded region
determines the stability of © | contains the links that
nodes w.rt. small local .. will spread the contagion

erturbations 10” ' ' '
P 10" 10 107 0.06  4o°

Scaled Netted Bilateral Exposure, .Jij f CT1



What determines the critical fraction q !

Lame Loans Lethal to U.S. Banks’ Livelihood Bloomberg

About 2.6 percent U.S. banks’ nonaccrual rate: M Number of problem institutions:
of the $7.74 trillion ¥stopped collecting interest/are no | aid Banks facing a threat to their soclvency. W
in bank loans 4.0% 1,600

outstanding in the The SaVingS

U.S. at the end of Sl
March wore 3.5 Loan Cirisis 1,400

nonaccruing, the

most in 17 years, 3.0 1,200
according to the

most recent data 2.5 1,000
from the FDIC.
Former regulators
say the number of
banks at risk of
insolvency is . 600
increasing.

2.0 800

400

Source: Federal Deposit
r . 200
Insurance Corparation

0
‘06 ‘07 08 09

“Toxic Loans Topping 5% May Push 150 Banks to Point of No Return”

Nonperforming loans: commercial and consumer debt that has stopped collecting
interest or will no longer be paid in full.

According to regulators, nonperforming loans > 5% of [a bank’s] holdings...
can wipe out a bank’s equity and threaten its survival.



Local Stab| | |t)l Calculated without explicit time-evolution

Contagiousness: A node is contagious at a given value of q if there is at
least one neighbor that will fail if the node fails.

Vulnerability: A node is vulnerable at a given value of q if there is at least
one neighbor whose default can lead to the default of the node.

For g = 0, almost all nodes are contagious and vulnerable
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o
(75
I3
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50 100 150 50 100 150
Bank index Bank index

As g increases, nodes change from contagious/vulnerable (yellow) to healthy (green)



Global Stability

Calculated by explicit time-evolution

When a node fails, it can (depending on @) initiate a sequential cascade
of failure events in the network

Global stability of the network is inversely related to the mean size of the
failure avalanche triggered by a single node

Measured by g = [<Avalanche size>]"! with average taken over
perturbation of each node of the network

If no propagation of failure occurs, g = |
If every node in a network of size N Cascade-pattern for largest cascade

fails, then g = I/N

Initial perturbation:
single default event

Propagation of failures for q = 0.01
in which a total of 67 banks default
after the initial default of a single
bank

The disturbance affects the entire
core of strongly connected banks

\
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cascade round
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Distribution of
=2 avalanche sizes
E q = 0.0l
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Number of Modes failed

Decreasing q increases the \
number of nodes affectedina 3 2
failure cascade ©

o 40+
Q. But how can large-scale or _E
global failure occur (affecting 2
almost all nodes) ? 20+

Ans: A feedback process
involving liquidity crisis

Bimodal distribution:
Cascades follow “many or nothing” behavior —

| either the failures don’t spread at all from the

initially perturbed node or many nodes dafault

Global Failure &
Liquidity Cirisis

——max nb failed
—— mean nb failed

Several defaults at given q affect credit
availability — resulting liquidity crisis
decreases q leading to more defaults

A

A\

triggered by failures — which in
turn causes more failures

0.4 06 0.8
Critical fraction g

0.2



Network Topology & Global Stability

40
To understand how the topological features of _?;:?c;gi: ’I*:::;’ exchangs
the inter-bank network affects the global 30. random weight exchange
stability, we consider ensemble of randomized 1;:
networks ‘% 20l For low g empirical
N e N g network is the most
\1 . .\\2 ) 2 stable
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Ciritical fraction g

P
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Random weight Random link E
exchange exchange L_CD) — original NW

random link exchange
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Predicting Dynamical Stability from Topology

Can the local stability (contagiousness and vulnerability) of banks
and their impact on global stability (magnitude of cascade they

can cause) be predicted solely from topological information

about the network ?

Compute the overlap between the most important 10% banks identified by
three structural measures and three dynamical measures using Jaccard index

E K B C \Y G
E, EV centrality | 0.63 03909 06 073
K. Core number 0.63 1 0.38] 0.56 0.62 0.70
B. Backbone-reduction | 0.39 0.38 11 0.39 0.34 0.43
C, Contagious 0.9 0.56 0.38 1 058 0.67
V, Vulnerable 0.65 0.63 0.34| 0.58 1 0.55
G, Global stability 0.73 0.70 0.43| 0.67 0.55 1

Eigenvector centrality is best indicator for local and global stability: 90% overlap
with contagious banks, 65 % with vulnerable and 73 % with global “superspreaders”



Conclusions

* Understanding Systemic Risk by using dynamical
systems defined on complex networks

e Characterization of Inter-bank network from bilateral
exposure data of US and European banks

* Investigating heterogeneity & modularity of the network

* The dynamics of cascading failures: local & global
stability

* From network topology to dynamics: using structural
measures to identify critical nodes

* Global failure: possible role of liquidity crisis ?
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