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We build dynamic models of community assembly by starting with one species in our
model ecosystem and adding colonists. We find that the number of species present
first increases, then fluctuates about some level. We ask: how large are these
fluctuations and how can we characterize them statistically? As in Robert May’s
work, communities with weaker interspecific interactions permit a greater number of
species to coexist on average. We find that as this average increases, however, the
relative variation in the number of species and return times to mean community levels
decreases. In addition, the relative frequency of large extinction events to small
extinction events decreases as mean community size increases. While the model
reproduces several of May’s results, it also provides theoretical support for Charles
Elton’s idea that diverse communities such as those found in the tropics should be
less variable than depauperate communities such as those found in arctic or agricul-
tural settings.
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Theoretical studies have generally supported the notion
that as community complexity increases, stability de-
creases (Gardner and Ashby 1970, May 1972, Gilpin
1975, Pimm and Lawton 1978, Hogg et al. 1989).
Authors of such work typically analyze the local or
species-deletion stability of randomly organized interac-
tion matrices and/or Lotka-Volterra systems. With few
exceptions (e.g. in donor-controlled communities) theo-
retical research has shown a negative relationship be-
tween stability and complexity (Pimm 1982). Conversely,
empirical work generally shows that as communities
increase in species richness they also increase in stability
(McNaughton 1978, Tilman and Downing 1994, Tilman
et al. 1996, Naeem and Li 1997). Studies conducted in
controlled microcosms demonstrate a positive relation-
ship between species richness and aggregate measures of
community stability such as total biomass (Tilman et al.

1996, Naeem and Li 1997). Though this disconnect
between theory and experiment is partially due to vary-
ing definitions of stability, it has nevertheless led to what
has become the ‘diversity-stability debate’ in ecology
(McCann 2000).

An alternative approach to modeling communities as
randomly constructed entities is to assemble them one
species at a time. Models of this kind typically draw
species from a limited pool of resources and consumers
until a final community state is reached (Post and Pimm
1983, Drake 1990, Law and Morton 1996). A clear
advantage to this approach is the realism embodied in
the methodology. As such, models of this kind have
closely corroborated experimental manipulations in mi-
crocosm experiments. While much effort has been fo-
cused on analyzing the invasibility of these models, there
has been little work analyzing their statistical properties.
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Here we construct dynamic models of community
assembly starting with one species and then adding
colonists to our hypothetical ecosystem. As with previ-
ous studies, we find that the number of species initially
increases, then fluctuates about some level. We ask:
how large are these fluctuations and how can we char-
acterize them statistically? We present the results
through an ecological lens, though much like previous
work in this area, the model may have broader applica-
tion to other networked systems such as those found in
economics, sociology and computing.

Methods

We begin with one species in our model ecosystem and
add colonists to the network one at a time. New
colonists interact with resident species with probability
p, where p is chosen such that the resultant connectance
C (where E(C)=p), of our ecological network approx-
imates the values reported in empirical food web stud-
ies. We compare scenarios p=0.05, 0.10 and 0.15. Once
a link has been established between two species, interac-
tion strengths are then assigned from a specified distri-
bution. We focus our analysis on normal (0, �)
distributed interactions, where � is a joint measure of
the population of a species and average interaction
strength between species. For the remainder of the
paper we refer to � simply as interaction strength,
though it can be (as in equations containing nonlinear
terms) a weighted measure of interaction strength and
populations size depending on the specific form of the
underlying equations. We focus on normally distributed
interactions because weak interactions are thought to
be more common in nature than strong ones but we
also test uniform (−a, a) and beta (r, s) distributions
where beta parameters r and s are chosen such that the
distribution of interaction strengths is basin shaped
thus emphasizing strong interactions. Species interac-
tions in our community are represented by a matrix A
with elements aij such that perturbations of species
from a community equilibrium satisfy the equation,

dx

dt
=Ax, (1)

where A is the Jacobian matrix resulting from a Taylor
expansion of a set of nonlinear first-order differential
equations around one of their equilibrium points, re-
taining only the linear terms. The variable x indicates
deviation from the equilibrium. As in May (1972), we
do not specify the form of these equations, so that our
model remains simple and general. This also means that
we do not need to consider feasibility issues (Roberts
1974) since such considerations are only relevant when
explicit dynamics (e.g. Lotka-Volterra) are specified.

Diagonal terms aii are set to −1 so that populations
are self regulated and normalized with respect to their
intrinsic growth rates. We then analyze the local stabil-
ity of the system by calculating the eigenvalues of the
community matrix A. We use the condition that if the
real part of the dominant eigenvalue is greater than
zero, then the equilibrium point at which the commu-
nity exists is unstable (May 1972). If it is unstable, we
remove a species at random. Conversely, if it is stable,
we add another species with a binomial (n, p) dis-
tributed number of links, where n is the number of
species, and randomly chosen interaction strengths as
described above. We then analyze the local stability of
the system and repeat the process. The model is then
allowed to run for 5×105–106 iterations, which is more
than sufficient to assess the statistical properties of the
system.

Fig. 1. (A) The number of species in the model ecosystem is
plotted over time for a connectance=0.05 and interaction
strength �=0.4 from a normal distribution. (B) The corre-
sponding distribution of species diversity of such communities
is plotted for three different mean interaction strength levels �.
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Results

Communities in our model initially grow monotonically
and then settle into a pattern of growth spurts and
collapse (Fig. 1A). This process of community growth
and decline ultimately defines a stationary stochastic
process in the sense that a limiting distribution of states
is approached asymptotically. A Fourier transform of
the resulting time series can be modeled by a power law
of the form,

P=�f �, (2)

where P is the power spectral density of the time series,
f is the frequency and � and � are constants. An
exponent of �� −3 indicates that the process of com-
munity growth and collapse is more correlated than a
random walk, which has exponent �� −2 (Feller
1966).

Previous studies, both empirical and theoretical, have
shown that as communities grow, they settle into a
climax state thus becoming less invasible (Post and
Pimm 1983, Dickerson and Robinson 1986, Robinson
and Edgemon 1988, Drake 1990, Law and Morton
1996). Studies of this kind focus on a limited set of
species interacting over a narrow time horizon. The
pattern we observe is similar to other community as-
sembly models in its initial growth, but it differs
markedly in that a final climax state is never reached.
Our model may be thought of as acting on a longer
time scale such that a balance of colonization and
extinction is maintained.

In Fig. 1B we illustrate the size distribution of the
communities for the values 0.4, 0.45 and 0.55 of aver-
age interaction strength � from a normal distribution.
The mean of the distribution shifts to higher values as
� decreases. This indicates that communities with over-
all weaker interactions can support a larger number of
species, which agrees, in principle, with the general
theoretical result that weak links are more stabilizing
(May 1974, McCann et al. 1998). Communities with
strong links in our system cannot sustain as many
species as those with weaker links because the probabil-
ity of becoming unstable, as species are added to com-
munities with strong interactions, increases more
rapidly than in communities with weaker interactions.

Due to the stationarity of this stochastic process, it is
appropriate to analyze the stability of the system in
terms of variation in community size. Communities that
vary widely around the mean are less stable than com-
munities that stick more closely to the mean. A cursory
glance at the variance of community distribution (Fig.
1B) indicates that it gets larger as community size
increases. We do not believe, however, that variance is
an accurate descriptor of stability here, so instead we
investigate the variability of our communities by calcu-
lating the coefficient of variation (CV), which standard-

Fig. 2. (A) The coefficients of variation and (B) return times
to equilibrium are plotted for communities with different mean
number of species for three different connectance levels C.

izes the measure of fluctuation in community size for
different means. Large communities are more likely to
lose more species than small communities because they
have more to lose. It is how many species these commu-
nities lose on a percentage basis that we are concerned
with.

Our results indicate (Fig. 2A) that increasing mean
community size leads to decreasing values of CV indi-
cating that more diverse communities are less variable.
To be more specific, diverse communities in absolute
terms lose more species than depauperate ones, but as a
percentage of their members they lose less.

The distribution from which interaction strengths
were drawn did not change our results qualitatively.
Communities assembled from uniform and basin
shaped beta distributions both showed the same pattern
of decreasing CV with increasing diversity. What ap-
pears to be driving the reduction in CV is the assembly
process itself. Figure 2A also reveals that as connec-
tance C increases for a given community size, CV
decreases.
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Another way to investigate the variation of our com-
munities is to look at the size distribution of species
extinction cascades. Communities with more large cas-
cades relative to small ones may be thought of as more
variable than communities with more small cascades
relative to large ones. The distribution of these extinc-
tion cascades generally showed a power law variation
with exponent � (represented as slope on a log-log plot)
over one decade followed by an exponential cut-off due
to the finite size of our system (Fig. 3). Specifically,

N=�S−� (3)

where S is the cascade size, N is the number of such
cascades and � and � are constants. The value of �

increases with increasing mean community size where �

and � are greater than zero. The larger the value of the
exponent, the more negative the slope of the power law
and thus the smaller the frequency of large cascades,
corroborating our previous result that communities de-
crease in variation as they get larger.

In addition to analyzing the variation in community
size, we investigated return times to mean community
size. We did this using two approaches. In the first, we
used the mean of our time-series as a threshold, and
evaluated the number of time-steps between each de-
parture and subsequent return to this threshold. In the
second, we looked at return times to the mean from
points a maximum or minimum distance away from the
mean. The length of each of these interval periods was
stored in a vector. We then take the mean of this vector
and divide by the variance of the time series. Normaliz-
ing the mean by the variation is analogous to the
normalization procedure we previously used for vari-
ance. In that case we compared the variance of distribu-
tions drawn from different means. Here, we compare
means drawn from distributions of different variance.
The qualitative results of both measures of return time
were the same. Namely, as seen in Fig. 2B, return times
decrease with increasing mean community size and
decreasing connectance.

Discussion

Robert May’s results and subsequent work indicate
that large randomly assembled ecosystems tend to be
less dynamically stable as they increase in complexity
(May 1972, Gilpin 1975, Pimm 1982, Hogg et al. 1989).
Specifically, if �2nC�1 then the system will almost
surely be unstable. Real ecosystems are not randomly
constructed, however, but rather gradually assembled
through a long series of invasions and extinctions. This
is a non-equilibrium situation where – driven by exter-
nal factors such as weather, species invasion or some
other kind of disturbance – the system is constantly

changing over time. Our assembly model simulates this
process of gradual formation, and thereby builds a
more realistic ecosystem.

Fig. 3. The distributions of extinction cascades is plotted for
communities with a mean of (A) 20 species (B) 52 species and
(C) 98 species. Cascade distributions are power law with
exponential tails due to the finite size of the system. As
community size increases the slope of this power law decreases
indicating that the smaller a community gets, the more likely it
is to experience large extinctions on a relative basis.

366 OIKOS 99:2 (2002)



Our model shows the same directional relationship
between the variables �, n and C on community size
that May demonstrated on community stability. Be-
cause our method of constructing communities pro-
gresses according to a specified algorithm that reflects
the community assembly process, however, our systems
are not subject to the same stability criterion as May.
In order to build larger and larger communities, we
must decrease mean interaction strength or connec-
tance, but once a community is established, species-rich
communities are less variable and return more quickly
to mean levels than do less diverse ones.

Our results lend theoretical support to the view,
espoused by Charles Elton, that more diverse ecosys-
tems such as those found in the tropics are less prone to
large oscillations in species abundance, and hence more
stable, than less diverse ecosystems such as those found
in the arctic or horticultural fields (Elton 1958). This
idea originally received theoretical justification based
on the assumption that a multiplicity of predator-prey
associations in a community frees it from dramatic
changes in abundance when one of the prey or predator
species declines in density (MacArthur 1955). May’s
result, however, ran counter to this argument. Our
model corroborates both views. Stronger interactions
and increased connectivity lead to smaller communities,
yet when the system is diverse and highly connected, it
is likely to be less variable than its sparsely connected
and less diverse counterpart.

Our focus on CV should give conservation biologists
pause. Are we worried about species loss on an abso-
lute basis or on a relative basis? Because large commu-
nities have more species, we should expect them to lose
more species. The fact that we predict that they will
lose less on a percentage basis, however, implies that
being large is stabilizing.
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