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Emergence of universal scaling in financial markets from mean-field dynamics
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Collective phenomena with universal properties have been observed in many complex systems with a large
number of components. Here we present a microscopic model of the emergence of scaling behavior in such
systems, where the interaction dynamics between individual components is mediated by a global variable making
the mean-field description exact. Using the example of financial markets, we show that asset price can be such a
global variable with the critical role of coordinating the actions of agents who are otherwise independent. The
resulting model accurately reproduces empirical properties such as the universal scaling of the price fluctuation

and volume distributions, long-range correlations in volatility, and multiscaling.
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I. INTRODUCTION

Universal scaling behavior is an emergent property of many
complex systems [1]. In such systems, the interactions between
a large number of individual components yields macroscale
collective behavior with features that are almost invariant
across different spatial and temporal scales [2]. A financial
market provides a general and useful paradigm of such a
system, since it involves a large number of agents whose
actions are subject to internal and external influences, such
as information about the state of the market as provided by
market indices [3]. Despite this complexity, the availability of
a large volume of high-quality data for analysis has enabled
the identification of well-characterized statistical properties
[4,5]. These properties, including the fat-tailed distribution of
relative price changes [6,7] and intermittent bursts of large
fluctuations that characterize volatility clustering [8], appear
to be universal: they are invariant across different markets,
types of assets traded, and periods of observation [9]. More
generally, the question of how universal features emerge
from collective behavior in systems with many components
is not restricted to the purely economic domain. Thus,
new approaches to understanding the behavior of financial
markets may contribute to the understanding of the physics of
nonequilibrium steady states in general.

Mainstream economic theories for price fluctuations of
financial assets typically assume the efficient market hypoth-
esis [10]. According to this, price variations reflect changes
in the fundamental (or “true”) value of the assets. However,
detailed analysis of data from actual markets show that much
of the observed price variation cannot be explained solely in
terms of changes in economic fundamentals [11]. The absence
of a strong correlation between large market fluctuations and
purely economic factors leaves unresolved the question of why
markets are so volatile. As the dynamics of markets are a result
of the collective behavior of many interacting constituents,
models based on statistical physics have been proposed
to explain the observed universal behavior [12—-15]. Most
such models consider explicit interactions between agents to
reproduce a very limited set of the universal empirical features.
However, it is possible that the observed complex behavior
is a result of a mean-field-like global variable mediating the
dynamics of components, which are therefore coupled only
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indirectly. Such a potential simplification in analyzing the
nonequilibrium steady state for markets holds promise as
a general descriptive framework for the dynamics of many
complex systems.

In this article, we present a model for market dynamics
where the action of each agent is governed solely by global
information about the system, viz., the price p, of the single
asset being traded. At each time step, every agent goes through
a two-step stochastic process, analogous to decision making
in an uncertain environment. Based on the deviation of the
instantaneous price from its long-term average (representing
the notional fundamental value of the asset) and the direction
of price movement, each agent decides (a) whether to initiate
a trade and (b), if yes, whether to buy or sell. The price in
turn evolves as a function of the net demand, measured as the
difference between the number of buyer- and seller-initiated
trades. Thus, our approach falls broadly within the theoretical
framework that treats markets as a system of spins, but it differs
from earlier models in not having direct Ising-like interactions
between the agents [14,16]. Further, the fluctuations in the
model variables are endogenous to the system and are not
responses to external noise simulating the arrival of news or
information [12]. Despite its simplicity the model reproduces
the observed universal properties of markets. These include
the scaling behavior of the distribution of price fluctuation
measured by the relative logarithmic change, viz., the return,
Ri A+ = In(psya¢/p:) defined over a time interval Ar. The
cumulative distribution of R; o, shows a power-law tail with a
characteristic exponent @ ~ 3 for many different markets—a
robust property referred to as the inverse cubic law [17,18].
Our model, which displays power-law scaling in the return
distribution over a large region of the parameter space, can
quantitatively reproduce the inverse cubic law on introducing
heterogeneity among the agents. For the same parameters, the
scaling exponent ¢y for the distribution of trading volume in a
given interval of time, V;, agrees with the empirical values re-
ported in Ref. [19]. Moreover, the time series generated by the
model exhibits multifractal statistics [20] and the autocorrela-
tion of absolute returns decay slowly, a signature of volatility
clustering seen in actual markets [21]. We also give an analyt-
ical derivation of the relation between the scaling exponents
for return and volume distributions generated by the model,
which is in good agreement with the empirical literature.
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II. THE MODEL

We consider the market to comprise N agents, each of
whom are in one of three possible states at time ¢, viz.,
S;(t) = 0 (not trading), +1 (buying), and —1 (selling) (i =
1,...,N) [22]. For simplicity, we assume that an agent can
trade a unit quantity of asset at a given instant. The change
in the price of the asset is driven by the net demand, as
measured by the global order parameter M, = ), S;(t)/N.
Thus, after time instant #, the asset price changes to p,; =
[(14+ M)/(1 — M,)]p;, with pg > 0, which ensures that the
price is always positive and rises (falls) when there are
relatively more buyer- (seller-) initiated trades, with the
inactive agents, i.e., S;(f) = 0, not affecting the process. A
price equilibrium (p;4+; = p;) is achieved when supply equals
demand (M, = 0), while in extreme cases, when all N agents
wish to buy (sell), the price diverges (crashes to 0). We have
verified that the exact form of the price function is not critical
to obtain the results described here.

In our model, the net demand M, is driven by the collective
behavior of agents, with each individual’s state S; in turn
evolving as a result of fluctuations in the instantaneous price
p: around the asset’s fundamental value p; as perceived by an
agent. As a potential buyer (seller) who initiates the trading
process needs to find a potential seller (buyer) in order to
complete the transaction, the trading frequency would tend to
decrease as the deviation |p; — p;| increases. This is because
when the price p; differs significantly from the fundamental
value of the asset, even though the initiating agent may be
extremely eager to trade, the other agent would be unwilling to
engage in what it sees as an unfavorable transaction (assuming
all agents possess the same information about the fundamental
value). As the “true” value of p; is privileged information
and therefore inaccessible to an agent, it is estimated based
on the observed price time series as p; >~ (p;)., a long-term
moving average measured over a time interval ending at the
present instant ¢ and beginning 7 time units earlier (r = 10*
for the results shown in the article). Note that previous studies
have shown that several features of empirical market dynamics
are determined by an effective potential defined in terms
of the long-term moving average of price [23]. Given the
price history, an agent i will trade at time ¢ according to the
probability

P[ISi(Ol =11 =1— P[Si(r) = 0]
exp <_M ‘ Pr — (pt>r > i (1)

(Pe)e

where the parameter p is a measure of the sensitivity of an
agent to the magnitude of deviation of the price from its
perceived fundamental value. For i = 0, the system reduces to
a two-state model where every agent trades at all time instants.

Any agent i who initiates a trade at time ¢, has to either
buy [Si(#) = +1] or sell [S;(#) = —1]. Using the simple
assumption that this is a random process, we allow each
trade to be either buyer initiated or seller initiated with equal
probability, independent of the price movement. We have
verified that introducing more complicated rules based on
consideration of supply and demand, where the decision to
buy or sell depends on the instantaneous price fluctuations
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FIG. 1. (Color online) Time evolution. (a) The time series of
price p, (solid line) and its moving average (p,). (broken line).
The corresponding (b) normalized returns, r;, and (c) volatility, o,
calculated as the standard deviation of returns in a moving window of
interval §r = 100, show intermittent bursts of large price fluctuations.
This indicates the presence of volatility clustering. Varying §¢ does
not change the result qualitatively. The model parameters are N = 10*
and = 100.

(e.g., as measured by the return), do not qualitatively change
the results reported here.

III. RESULTS

Time evolution of the asset price, p,, shown in Fig. 1(a),
is qualitatively similar to the time series of stock prices or
indices observed in real markets. The moving average of p;
(broken line) which is the agents’ perceived fundamental value
of the asset, tracks a smoothed pattern of price fluctuations
coarse-grained over a time scale t. The normalized returns
r; for At = 1 time unit, obtained from R, by subtracting the
mean and dividing by the standard deviation of the entire return
time series, exhibits significantly large deviations relative to
that expected from a Gaussian distribution [Fig. 1(b)]. These
intermittent bursts of large fluctuations have a tendency to
aggregate together. This is seen more clearly from the volatility
o;, which is a measure of risk (the unpredictable change in
the value of an asset) and may be calculated as the standard
deviation of r, over a moving window. The clustering of
volatility seen in Fig. 1(c) is a universal feature of financial
markets.

The nature of price fluctuations can be examined in more
detail by focusing on the cumulative distribution P.(r; > x).
When the agents are homogeneous (i.e., having the same
sensitivity w), this distribution shows power-law tails having
exponent o =~ 2 for a large range of values of u (viz. u > 50).
For lower values of © (<10) the distribution is exponential.
In reality, agents will differ in their responses to the same
stimulus. This heterogeneity in agent behavior is modeled by
a distribution of the sensitivity parameter p that measures the
degree of risk aversion in an individual. Figure 2(a) shows that
the cumulative distribution for r, quantitatively reproduces
the inverse cubic law (¢ ~ 3) when u for each agent is
randomly selected from an interval. To accurately determine
the numerical value of the return exponent ¢, we use the Hill
estimator, ¥4 ,, for a time series of length n, whose inverse
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FIG. 2. (Color online) Distributions. (a) Cumulative distribution
of normalized returns for heterogeneous agents with p distributed
uniformly over [10,200]. The broken line indicates a power-law
exponent of —3 and the circles represent the standard normal
distribution. (b) The corresponding cumulative distribution of the
number of agents trading at a given time instant ¢, n,, with the broken
line indicating a power-law exponent of —1.5. The results are obtained
by averaging over multiple realizations of the model with N = 10*
agents simulated over 2 x 10° time units.

approaches the true value of « as the order statistic k — oo
with % — 0[24]. To avoid the bias arising from finite length of
the time series, we have used a subsample bootstrap method to
estimate the optimal k [25]. Using this method, the estimated
value of the exponent « is 3.11 for the positive tail of the return
distribution [shown in Fig. 2(a)] and 3.12 for the negative tail.
We have verified that this long-tailed behavior of returns is
robust with respect to variations in the interval and the nature
of the distribution for .

As the model assumes that each trade involves a unit
quantity of the asset, the total number of traders at any
instant ¢, viz., n, = ) ; |Si(t)], is equivalent to the trading
volume V;. The distribution of this variable also exhibits a
power-law scaling, with the exponent ¢y ~ 1 when the agents
are homogeneous. The heavy-tailed nature of n, distribution
is even more robust than that of r,, as we observe a power-law
tail also for lower values of u (where the return distribution
is exponential). On introducing heterogeneity among agents
as explained before, the cumulative distribution of n, is seen
to be a power law, whose exponent is evaluated by the Hill
estimator to be ¢y =~ 1.63 (using the same parameters for
which o >~ 3) [Fig. 2(b)]. This is almost identical to the trading
volume exponents reported for different markets [26]. In order
to check the sensitivity of our results on the assumption that
an agent can trade only a unit quantity, we have verified
that a Poisson distribution of the number of units traded
by an agent does not change the results qualitatively. Thus,
our model suggests that heterogeneity in agent behavior is
a key factor for explaining the quantitative properties of the
observed distributions. It implies that when the behavior of
agents become more homogeneous, e.g., during a market
crash, the return exponent o will tend to decrease. This is
intriguing in light of earlier work [27] showing that the power-
law exponent for the distribution of relative prices during a
crash has a value that significantly differs from that seen at
other times.

Turning now to the correlation properties of the return
time series, we see that r, is uncorrelated, as expected from
the efficient market hypothesis [10]. However, the absolute
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FIG. 3. (Color online) Correlations. (a) The autocorrelation of
r, (triangle) rapidly falls to noise level but its absolute value
(squares) shows long-term memory. (Inset) Probability distribution
of the volatility, o,. (b) The g-th moments of absolute value of the
fluctuations in return have a power-law scaling relation with respect
to the time scale d. The inset shows the nonlinear variation of the
corresponding power-law exponent, ¢,, indicating multifractality. The
model parameters are N = 10* and & = 100.

values, which are a measure of the volatility, show a slow
logarithmic decay in their autocorrelation [Fig. 3(a)], which
is a signature of long-memory effects operating in actual
markets [21]. Figure 3(a) (inset) shows the bulk of the volatility
distribution which has a log-normal form as found empirically
[28]. To understand better the temporal organization of price
fluctuations than is possible with the two-point correlations, we
consider the n-point correlations as reflected in the multifractal
spectrum [29,30]. Figure 3(b) shows the power-law scaling of
the g-th moment M, (d) of the absolute value of fluctuations as
a function of the time scale (d) being considered. The resulting
power-law exponents ¢, do not have a simple linear relation
to g (inset), indicating that the process is multifractal. Thus,
our model also reproduces the multifractal nature of financial
markets [20,21].

The genesis of the power-law scaling relations in the model
is strongly connected to the dynamics by which agents decide
to trade, which results in a variable number of buyer- or
seller-initiated trades at a given instant. This is illustrated by
the absence of power-law scaling when the number of trading
agents do not change with time (viz., u = 0 for whichn = N).
Further, it is the long-tailed nature of the distribution of n, that
is responsible for the heavy tails of the returns. For instance,
imposing a log-normal form on n, rather than generating it by
using Eq. (1), again results in fat tails for r,. This dependence
of the long-tailed nature of the returns on the distribution
of number of trading agents can be analytically derived as
follows. First, we note that if the number of trading agents is
a constant (n, = n), the returns follow a Gaussian distribution
with mean 0 and variance, o2 ~ n. Therefore, when the
number of traders changes over time, with n, following a
distribution P(n), the corresponding return distribution P(r)
can be expressed as a sum over many conditional distributions
P(r|n):

N N
1
PrH)=> P P(n) = —r2/20)P(n),
(r) ,?:1 (r|n)P(n) n§=1 meXp( r°/2n)P(n)

2
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where N is the maximum number of agents who can trade.
If the cumulative distribution for n, follows a power law
with exponent ¢y as obtained from our model, Eq. (2) can
be rewritten as P(r) ~ [1/v/27] YN n=@+Dexp(—r2/2n).
Replacing the sum by an integral and taking the upper limit
N — oo, we get a closed form solution

P(r) = Cr,K(0.5+ ¢y, 1.5+ ¢y, —r?/2), (3)

where K(.) is the Kummer confluent hypergeometric func-

tion and the normalization constant C, = %.
V - \4

Numerically evaluating K(.) gives a power-law distribution
for r. For half-integral values of the exponent ¢y, Eq. (3)
simplifies to a form where the power-law nature of the return
distribution is evident, e.g., for {y = 3/2, as obtained in
our model for heterogeneous distribution of agents, P(r) =
Crpzp(1/r4)[4 — 2" (2 + r?)], with Ce, =32 > 1.67. For
large r, P(r) ~ r~*, indicating that the cumulative distribution
of returns will have a power-law tail with exponent o = 3 (i.e.,
the inverse cubic law).

IV. CONCLUSIONS

In this article we have presented a model for the dynamics
of complex systems which quantitatively reproduces the
observed universal properties of markets without consid-
ering explicit interactions among agents or prior assump-
tions about individual trading strategies (e.g., chartists vs.
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fundamentalists) [12]. Recent work on other aspects of
financial markets have shown that coherent collective behavior
can emerge in a system through components responding to the
same global signal [31]. We show that the price of an asset
can play the role of such a mediator that generates effective
interactions between agents, resulting in a nonequilibrium
steady state characterized by scaling distributions. Hetero-
geneity of agent behavior is seen to be critical for obtaining
the inverse cubic law, suggesting that in normal circumstances
agents differ significantly in terms of their response to similar
market signals. On the other hand, when the agents are more
homogeneous in their behavior (as during a crash), the model
exhibits even fatter tails. Possible extensions of our model
include the introduction of a volume dynamics that decides
the quantity of assets traded by an agent at a particular time
instant, the inclusion of multiple assets and considering the
effect of external news. The framework presented here can
be applied to many other complex systems whose emergent
phenomena can be explained in terms of indirect interactions
between components mediated by a mean-field-like variable.
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