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Suppression of cardiac alternans by alternating-period-feedback stimulations
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Alternans response, comprising a sequence of alternating long and short action potential durations in heart
tissue, seen during rapid periodic pacing can lead to conduction block resulting in potentially fatal cardiac failure.
A method of pacing with feedback control is proposed to reduce the alternans and therefore the probability of
subsequent cardiac failure. The reduction is achieved by feedback control using small perturbations of constant
magnitude to the original, alternans-generating pacing period T , viz., using sequences of two alternating periods
of T + �T and T − �T , with �T � T . Such a control scheme for alternans suppression is demonstrated
experimentally in isolated whole heart experiments. This alternans suppression scheme is further confirmed
and investigated in detail by simulations of ion-channel-based cardiac models both for a single cell and in
one-dimensional spatially extended systems. The mechanism of the success of our method can be understood
in terms of dynamics in phase space, viz., as the state of activity of the cell being confined within a narrow
volume of phase space for the duration of control, resulting in extremely diminished variation in successive
action potential durations. Our method is much more robust to noise than previous alternans reduction techniques
based on fixed point stabilization and should thus be more efficient in terms of experimental implementation,
which has implications for clinical treatment for arrhythmia.
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I. INTRODUCTION

Rapid stimulation (pacing) of cardiac tissues is a commonly
used technique [1] to generate wave trains for removing
sources of irregular activity responsible for arrhythmias,
potentially life-threatening disruptions in the normal rhythmic
activity of the heart [2]. However, although using higher-
frequency stimulation should increase the probability of
suppressing the abnormal activity [3], extremely rapid pacing
can generate a time-varying response of the cardiac tissue
(referred to as alternans) [4] to the applied stimuli because of
the nonlinear recovery properties of excitable cells [5]. Such
alternans, producing beat-to-beat variation in the duration of
cellular activity (action potentials), successively elicited by
the applied stimuli can themselves produce further sources of
arrhythmia, thereby defeating the very purpose of pacing.

Cardiac beating can be characterized by the cycle length
(CL), which consists of an action potential duration (APD),
followed by a recovery period or diastolic interval (DI) before
the next beat starts (see Fig. 1). The CL can be controlled by
external pacing and if the CL is too short, the cardiac system
can develop alternating long and short APDs. The dynamical
origin of the emergence of alternans can be best understood in
terms of the cardiac restitution curve. For a cardiac system
subjected to stimulation with an interval Tn between the
generation of the nth and (n + 1)th action potentials, the
duration of the latter depends on the former according to

an+1 = f (dn) = f (Tn − an), (1)

where an and dn are the APD and the DI of the nth beat,
respectively. The return map f relating successive APDs is the
restitution function for the duration of an action potential that
depends on the preceding DI, i.e., the period between the end
of the earlier action potential and the beginning of the current
one. For a constant slow pacing period T (i.e., fixed Tn = T ),

the APDs are constant, corresponding to a stable fixed point
of the restitution return map: a∗ [= f (T − a∗)]. However, for
fast enough pacing (i.e., small T ), this fixed point becomes
unstable, giving rise to a period-2 attractor leading to a steady
sequence of alternating long and short APDs.

Earlier methods for reducing alternans have been based on
feedback control techniques to stabilize the dynamical fixed
point by changing the pacing period with a proportional gain
method [6–9]. In this proportional gain method, the pacing
period Tn of the nth step is controlled as

Tn = T + γ

2
(an − an−1), (2)

where γ is a tunable parameter that defines that feedback gain.
It can be easily shown [8] that the originally unstable trivial
fixed point can be made stable if γ is tuned to lie in the
range 1 − 1/f ′ < γ < 2/f ′, where f ′ ≡ f ′(T − a∗). Notice
that the stable range of γ becomes small if f ′ is steep (the
range vanishes as f ′ = 3). Furthermore, the pacing period of
the proportional feedback method varies over many different
values depending upon the difference between the last two
APDs recorded. The range of variation can be quite large,
especially at the initial stages after switching on the control,
and is a possible source of additional complications in potential
clinical applications. Furthermore, the proportional feedback
gain method has had only limited success in controlling
alternans in spatially extended systems [9].

In this paper we propose a method based on alternating
period stimulation on an excitable cardiac system that reduces
alternans significantly. The applied pacing period is made
to alternate between two values T ± �T (�T � T being
a predetermined control parameter) that are just above and
below the period T that is to be controlled. This makes our
proposed algorithm more akin to open loop control, whereas
the proportional feedback method is a closed loop scheme. As
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FIG. 1. (Color online) The time series of the transmembrane
potential V for a cell subjected to rapid periodic stimulation of period
T demonstrates alternans of the action potential duration (APD).
The nth action potential is shown to have a relatively long duration
compared to the period between successive stimulations (denoted as
the cycle length CLn). As the diastolic interval (recovery period) of the
cell (denoted as DIn) is short before the onset of the next excitation,
the resulting (n + 1)th action potential is shorter. Notice that CLn,
APDn, and DIn are the same as Tn, an, and dn, respectively, in the
text.

open loop control is easier to implement in general, this should
be an appealing feature in practical applications. We further
test our method experimentally in an isolated whole heart
system and verify that alternans can indeed be significantly
reduced.

II. ALTERNATING PERIOD STIMULATION SCHEME
FOR CARDIAC ALTERNANS SUPPRESSION

We now describe our proposed alternating period pacing
algorithm that markedly reduces the variation between succes-
sive action potentials even when the system is driven by rapid
periodic stimulation that would, in the absence of control, lead
to significant APD alternans. As implied by the name “al-
ternating period,” the method relies on switching continually
between two different periods of successive stimulation of
the system, measured by the cycle length Tn for the period
between the nth and (n + 1)th action potentials (Fig. 1).
As alternans involves variation in the APDs, our proposed
method has to ensure that the APDs resulting from successive
stimuli remain almost the same. To ensure this, the algorithm
decides the time of next stimulation between two possible
values T+ ≡ T + �T and T− ≡ T − �T , where �T is a free
parameter chosen at the beginning of the simulation. Based
on the difference between the current and previous APDs, one
chooses Tn as follows:

If an > an−1, then Tn = T+; otherwise Tn = T−. (3)

This ensures that if APDn is short, the following APD will
also be short (as the cycle length is short); in contrast, if APDn

is long, the use of a longer cycle length will ensure that the
next APD will also be long. For most of the period during
which the alternating period pacing is applied, the cycle lengths
follow either the sequence T+T−T+T− . . . or the (effectively
equivalent) sequence T−T+T−T+ . . ., switching from one to

the other whenever an APD is shorter (or longer) than both its
preceding and following APDs. The choice of T± ensures that
the mean value for the cycle length is T , the period of rapid
stimulation for which we seek a steady response of the system.
For the results reported here, the value of T has been chosen
such that while for �T = 0 we observe large alternans, the
magnitude of the period-2 response is significantly reduced
for a suitable choice of 0 < �T � T .

III. EXPERIMENTAL RESULTS

The control scheme for the suppression of alternans
proposed above has been tested in isolated heart experiments
in a Langendorff system. Briefly, the Langendorff system is
used to maintain the physiological condition of an isolated
heart and keeping it functional by providing perfusion with
nutrient-rich oxygenated solution at a constant temperature.
In our experiments the hearts are extracted from Wistar rats
(weight between 250 and 300 g, both males and females).
Usually, the preparation can last for 3–4 h. In the experiment,
pseudo electrocardiograms (ECGs) of the hearts at various
locations are monitored by inserting the electrodes in the heart
tissues. A pacing electrode placed on the septum between
two ventricles is used to provide controlled stimulation to the
isolated heart. The contraction pressure of the left ventricle
(LVP) is monitored by a water-filled balloon (1 cm long,
made of latex) inserted inside the left ventricle through a
pressure transducer. Detailed descriptions of our setup and
experimental conditions can be found in Ref. [10]. The
protocols of the present study was approved by the Board
of Ethics of Academia Sinica and conducted according to
National Institutes of Health Guidelines for the Use and Care
of Laboratory Animals [11].

Implementation of the T+T− control scheme (3) is through a
PC equipped with a data acquisition system NI-6221 (National
Instruments, USA). A customized program written in IDL

(Research System Inc., USA) is used to monitor the pressure
LPV of the nth beat and send out a stimulation to the heart with
correct pacing interval (precision with 0.1 ms) for the (n + 1)th
beat. The electric stimulation to the heart is delivered through
an isolated stimulator (Model 2100, A-M Systems, Carlsborg,
WA, USA). The form of a single electrical stimulation is a
rectangular monophasic current pulse with a duration of 1 ms
and the amplitude is twice the diastolic threshold current.
Notice that, instead of using the an in the isolated heart for
control, we have used the pn in our control scheme, where
pn is the peak value of the LVP of the nth beat. Since it is
known that [12] a longer APD will lead to a stronger cardiac
contraction, there is a one-to-one correspondence between an

and pn. In fact, the first documented phenomenon of alternans
was based on the pulse pressure [2]. Therefore, we simply
replace the an with pn, with n being the beat number. Signals
from ECGs and the pressure transducer (LVP) are recorded
by another NI-6221, which is controlled by POWERGRAPH

PROFESSIONAL software (version 3.3.7, Russia) with a 4-kHz
sampling rate. The experiments reported below were all carried
out at 20 ◦C because it is much easier to generate alternans at
lower temperature with slow pacing [13]. We have checked that
experiments carried out at 37 ◦C produce qualitatively similar
results.
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FIG. 2. Time course of the LVP during the generation of alternans.
The pacing period is decreased from 450 to 400 ms and then to T0 =
350 ms. It can be seen that there is a transition from a single-period
to a period-doubling response of the heart. Notice that if the rate of
decrease of the pacing period is too fast or T0 is too small, there might
be inductions of tachycardia or fibrillations.

Before the start of an experiment, the excised heart was first
maintained in the Langendorff system for at least 30 min to
allow it to adapt to the Langendorff environment, beating with
its own sinus rhythm period TSR . Then external stimulations
are used to produce alternans by slowly decreasing the pacing
(beating) period from TSR to T0. Alternans can be seen as the
occurrence of two values of measured LVP for a single pacing
period. Figure 2 shows the time course of the generation of
the alternans. The pacing period in Fig. 2 is decreased in three
steps to the desired T0. It can be seen from Fig. 2 that while
the stimulation has a single period, the response of the LVP
undergoes a period-doubling transition. The alternans can be
seen as the LVP alternating between two different values. The
stability of this period-2 behavior depends on the state of the
heart and the magnitude of the alternans. In our experiments,
we have always checked that the alternating state is stable for
at least 10 min before we start our experiments. To start a
T+T− control experiment, procedures similar to those used in
Fig. 2 are used to first produce the alternans and then the T+T−
control is started 15–30 s after T0 has been reached.

Figure 3 shows the time course of the LVP in a typical T+T−
control experiment. The suppression of alternans can be seen
as the decrease in the magnitude of the difference between two
successive LPVs. In Fig. 3(a), T+T− control is started at t =
5 s and kept on up to t = 20 s. It can be seen that the response
of the heart changes immediately after the control is switched
on and the magnitude of the alternans (difference between
alternating peaks) decreases monotonically. From the figure it
can be observed that the alternans is suppressed around t =
17 s or within 40 beats. Another remarkable feature seen in
Fig. 3 is that the control itself has some systematic long-term
effect on the alternans state. This effect can be seen in Fig. 3(b)
once the control is switched off. From the figure it is clear
that the alternans state reemerges at (t = 25 s) once control
is switched off and the new state has a smaller alternans
magnitude compared to that before the control was applied.
It seems that the T+T− control has changed the alternans

(a)

(b)

FIG. 3. Time course of the LVP under 15 s of T+T− control with
�T = 10 ms and T0 = 400 ms. (a) Control started at t = 5 s and
lasted until 20 s. (b) Continuation of (a) after control has stopped.
Notice that the magnitude of alternans after control is smaller than
that before control.

response of the heart. There are some hysteresis effects of
T+T− on the heart.

The time for which the control is applied in Fig. 3 is kept
short so as to demonstrate the efficacy of the scheme. To study
the properties of the controlled state, we have also performed
experiments with much longer control time as shown in Fig. 4.
In this figure we show pn (the peak values of the LVP at the
nth beat) as a function of the beating number n. The initial
alternans state is prepared between n = 0 and 1350 with T0 =
500 ms. The alternans state can be seen as the existence of two
main values of the pn. Their difference is the magnitude of the
alternans. Similar to Fig. 3, it can be seen from Fig. 4 that the
suppression of alternans is fast once the control is switched
on. Now, with a control time of 600 s, it can be seen clearly
that the pn under control is not constant but takes on a range of
values more or less randomly. It would be desirable to control
the system to have a very short range of pn by using a smaller
�T . Figure 5 shows such an attempt with �T = 2 ms. It can
be seen that there is little suppression with this control. That
is, �T cannot be too small and there seems to be an minimal
value of �T for effective control.
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FIG. 4. Time course of the peak value of the LVP under 600 s
of T+T− control with �T = 14 ms and T0 = 500 ms. Time is being
shown as beat numbers. Control started at beat number 1350 and
ended at 2650. It can be seen that the magnitude of alternans after
control is smaller than that before control.

If we examine the reemerged alternans state after the
control is stopped in the experiments discussed above, it
can be seen that the reemerged state always has a smaller
alternans magnitude. There seems to be a hysteresis effect
on the heart when the control is applied. To check whether
this observation is an artifact of the T+T− control scheme,
we have also implemented the proportional control scheme of
Eq. (2) in our experiment. In experiments with the proportional
control scheme, we have also found similar effects (data not
shown). However, this hysteresis is not a long-term effect
due to a change in the physiology of the heart as we can
always reproduce the initial alternans state by regenerating it
from a nonalternans state with a much longer T0 as depicted
in Fig. 2. It seems that the control has put the heart in
a different dynamical state even after the control has been
stopped. Furthermore, to eliminate variabilities due to different
samples, the above experiments have all been repeated for at
least five different hearts and similar results were found.

IV. MODEL AND SIMULATION RESULTS

Our alternans suppression scheme can be investigated in
more detail by simulations for the cases of a single cell
and spatially extended systems of coupled excitable cells.
The spatiotemporal dynamics of several biological excitable
systems can be described by models having the generic form

∂Vt

∂t
= −Iion(V,gi) + Inoise(x,t) + Iext(x,t)

Cm

+ D∇2V, (4)

where V (mV) is the potential difference across a cellular mem-
brane, Cm (= 1 μF cm−2) is the transmembrane capacitance,
Iion (μA cm−2) is the total current density through ion channels
on the cellular membrane, and gi describes the dynamics
of gating variables of different ion channels. The stochastic
current density term Inoise represents an additive thermal or
channel noise [14] that is randomly fluctuating in both time and
space within a limited range (uniformly distributed between 0
and 0.5 μA cm−2 here). The space- and time-dependent pacing
current density Iext (μA cm−2) represents the external stimuli

(a)

(b)

FIG. 5. Time course of the LVP under 30 s of T+T− control
with �T = 2 ms and T0 = 360 ms. (a) Control started at t = 5 s.
(b) Continuation of (a) and the control is stopped at t = 35 s. Notice
that the magnitude of alternans after control is smaller than that before
control.

applied in a local region in order to generate wave trains.
The last term on the right corresponds to spatial coupling in
a multicellular array, with an effective diffusion constant D

(=0.001 cm2 s−1 for the results reported in the paper). The
specific functional form for Iion varies for different biological
systems. For the results reported here, we have used the
Luo-Rudy I model that describes the ionic currents in a
ventricular cell [15]. In this model, Iion is considered to be
composed of six different ionic current densities, viz., Iion =
INa + IK + IK1 + IKp + ICa + Ib, where INa is the sodium
ion channel current; ICa is the slow inward calcium channel
current; IK, IK1, and IKp correspond to different potassium
channel currents; and Ib is the background current. These
currents are determined by several time-dependent ion-channel
gating variables whose time evolution is governed by ordinary
differential equations of the form

dξ

dt
= ξ∞ − ξ

τξ

. (5)

Here ξ∞ = αξ

αξ +βξ
is the steady state value of ξ and τξ = 1

αξ +βξ

is the corresponding time constant. The voltage-dependent rate
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FIG. 6. (Color online) Suppression of APD alternans in a single
cell subject to rapid alternating period pacing. The figure shows that
when the cell is initially stimulated with constant period pacing (T =
240 ms), the APD shows a marked alternans behavior. After the
alternating period pacing is switched on (indicated by the dashed
line) where the stimulation period switches between T+ = T + �T

and T− = T − �T with �T = 2 ms, the APD variation becomes
negligible within a period of 10 s.

constants αξ and βξ are complicated functions of V obtained
by fitting experimental data.

For all our simulations, the maximum K+ channel conduc-
tance GK has been increased to 0.705 mS cm−2 to reduce
the APD [16]. To generate alternans in a single cell under
rapid pacing the maximum Ca2+ channel conductance has been
taken to be Gsi = 0.09 mS cm−2. We have explicitly verified
that our results are not sensitively dependent on small varia-
tions in the model parameters. It is also model independent as
similar effects were observed in models for a single cell with
other realistic channel-based descriptions of the ionic current,
such as the ten Tusscher–Noble–Noble–Panfilov model [17].

We consider in turn the response of a single cell and a
one-dimensional cable of excitable cells subjected to periodic
stimulations. The equations are solved using a forward-Euler
scheme with a time step dt = 0.01 ms. The spatially extended
system is discretized on an array of size L with space step
dx = 0.0225 cm and a standard three-point stencil for the
Laplacian describing the spatial coupling between the units.
For most results reported here L is between 30 and 40, although
we have used L up to 60. No-flux boundary conditions are
implemented at the edges. Pacing stimuli are implemented by
applying an external current Iext of magnitude 100 μA cm−2

for a duration of 1 ms. For a one-dimensional cable, it is
applied from one end of the system (x = 0) over a region of
finite width (0.225 cm). Action potential duration is measured
as the period between the successive instants when V crossed
−60 mV from below and from above.

Figure 6 shows the result of applying the alternating period
pacing method on a single cell to suppress APD alternans
when stimulating at a mean period of T = 240 ms. As seen
from the variation of the APD before the alternating method
is switched on (i.e., the region to the left of the dashed line),
stimulation at constant period T results in a significant degree
of alternans, with successive action potentials having durations
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FIG. 7. (Color online) Reduction of APD alternans in a one-
dimensional fiber of excitable cells by alternating period pacing. An
array of excitable cells with L = 30 subjected to pacing at the x = 0
end shows variation in the duration of successive action potentials
when it is subjected to a constant periodic stimulation (T = 250 ms),
with the magnitude of alternans increasing as one moves further away
from the pacing end along the fiber. Once the alternating period pacing
is switched on (indicated by the dashed line) with the stimulation at
the pacing end switching between T+ = T + �T and T− = T − �T

with �T = 10 ms, the APD variation is significantly reduced within
5 s. Notice that different points in the fiber show a similar degree of
reduction in the magnitude of alternans.

of 183 and 63 ms, respectively. However, when alternating
period stimuli with �T = 2 ms are applied, the alternans is
suppressed within 10 s to a relatively negligible magnitude,
with the action potentials at the steady state having durations
ranging between 147 and 151 ms. This finding is consistent
with our experimental observations that the alternans can be
suppressed within 50 beats after the start of the control. Notice
that the condition for switching between T+ and T− based on
the difference between successive APDs [Eq. (3)] is crucial
as a simple two-period pacing of the cell, i.e., using either the
sequence T+T−T+T− . . . or T−T+T−T+ . . . exclusively without
switching between them would result, after a short initial
transient of converging APDs, in successively diverging APDs.

While the suppression of alternans in a single cell is
encouraging, for the method to be applicable in practical
situations the alternating period pacing should be successful in
significantly reducing alternans in spatially extended systems.
Figure 7 shows the results of applying the alternating period
pacing method on a one-dimensional fiber of excitable cells
with L = 30. When the system is stimulated (the pacing
end is at x = 0) at a constant period T = 250 ms, different
points on the fiber show alternans having magnitude that
increases as one proceeds along the fiber away from the pacing
end. For example, at x = L/3, the successive APDs alternate
between 82 and 192 ms, respectively, while at the farthest end
(x = L) APDs switch between 62 and 195 ms, respectively, for
successive pacing stimuli (see the time series to the left of the
dashed line in Fig. 7). Within a few seconds of switching on the
alternating period pacing, the APD alternans is significantly
reduced and in the steady state the APDs fluctuate over a
relatively small range between approximately 141 and 166 ms
that does not vary significantly with the location on the fiber.
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FIG. 8. (Color online) Performance of the proportional feedback
control method in suppressing alternans in a one-dimensional fiber
(L = 40) of excitable cells in the absence and presence of noise. The
efficiency of the method is obtained from the standard deviation of
the durations of a long sequence of action potentials measured at
the center of the system (x = L/2) as a function of the feedback
gain parameter γ . The system is subjected to two different imposed
pacing periods (a) and (c) T = 215 ms and (b) and (d) 235 ms in
the (a) and (b) absence and (c) and (d) presence of noise. The dashed
blue line shows the standard deviation of the APD for constant pacing
with period T in the absence of feedback control (γ = 0). Applying
control can sometimes result in conduction block (CB) at a location
downstream of the pacing site (x = 0). For certain cases, no response
is elicited even at the pacing end; the control is said to be unstable
(US) in such cases.

The method is effective for even longer fibers; however, the
efficacy rapidly diminishes with system size, the decrease
in APD alternans as a result of alternating period pacing
becoming less marked for larger values of L.

It is instructive to compare the alternating period pacing
method with previously proposed algorithms for reducing
alternans [8]. These feedback control methods seek to stabilize
the unstable fixed point of the effective periodically perturbed
dynamical system by adopting the cycle length according to the
proportional control scheme given by Eq. (2). If the duration of
the nth action potential is larger than the (n − 1)th one, Eq. (2)
ensures that the next action potential has a longer duration than
would have been the case without control, thereby suppressing
alternans behavior. Figures 8(a) and 8(b) show the performance
of the proportional gain method on a fiber with L = 40 for two
different values of T , where the success of alternans reduction
is measured in terms of standard deviation for the sequence
of APDs. The dashed line shows the APD standard deviation
in the absence of control (γ = 0) and a comparison with the
corresponding values in the presence of control for different
values of the gain parameter shows that while this feedback
control can reduce alternans, it also sometimes results in
conduction block of the stimulation away from the pacing
site. Moreover, for higher values of the gain parameter, even
the pacing site may be incapable of being activated, a situation
we have referred to as the control being unstable.
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FIG. 9. (Color online) Performance of alternating period pacing
in suppressing alternans in a one-dimensional fiber (L = 40) of
excitable cells in the absence and presence of noise. As in Fig. 8,
the efficiency in reducing alternans is obtained from the standard
deviation of the durations of a long sequence of action potentials
measured at the center of the system (x = L/2) as a function of the
difference in the alternating periods �T . The system is subjected to
two different pacing periods (a) and (c) T = 215 ms and (b) and (d)
235 ms in the (a) and (b) absence and (c) and (d) presence of noise.
The dashed blue line shows the standard deviation of the APD for
constant pacing with period T (�T = 0). Alternating period pacing
can occasionally result in conduction block at a location downstream
of the pacing site (x = 0).

As in any experimental implementation of the control, one
will always have to encounter the effect of noise. We have
also examined the efficacy of the method by switching on
the stochastic fluctuation term Inoise in Eq. (4). As seen from
Figs. 8(c) and 8(d), the region of parameter space over which
the method is successful in reducing alternans is markedly
reduced in the presence of noise, with conduction block
becoming prominent at lower values of γ , while at higher
values of γ , the control tends to become unstable. When
we compare the performance of the alternating period pacing
method with that of the proportional gain method, we find that
the former performs favorably in terms of a reduced number of
instances where conduction block and instabilities of control
occur, while the degree of reduction of alternans is of a similar
magnitude (Fig. 9). This can be observed particularly in the
presence of noise [Figs. 9(c) and 9(d)], where the alternating
pacing period scheme can consistently perform well compared
to the proportional feedback control method.

To understand the better performance of the alternating
period pacing scheme in reducing alternans in the presence of
noise, we note that unlike the proportional feedback control
method, our control does not seek to alter the stability of the
fixed point. Instead it tries to confine the state of the system in
a small volume of phase space such that all variations in the
duration of action potential occur within a narrow interval. The
function f of Eq. (1) can be obtained by stimulating the cell
at different DIs and measuring the corresponding APDs [18].
For long interstimuli interval T , the action potentials have
an almost constant duration and the corresponding system
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FIG. 10. (Color online) The alternating period pacing scheme
reduces alternans by confining the system state in a small region
in phase space. The curves correspond to the composite return
map f ◦ f (APD) obtained from the restitution function Eq. (1)
numerically computed from a single cell. The middle curve cor-
responds to the situation where the cell is subjected to a constant
period stimulation with T = 220 ms. The two other curves cor-
respond to alternating period stimulation following the sequence
S: T+T−T+T− . . . or S ′: T−T+T−T+ . . . with T± = T ± �T (here
�T = 2 ms). The intersection of the curves with the diagonal line
APDn+2 = APDn shows the fixed points of the system dynamics. For
alternating period pacing the system has a stable fixed point (B and C

for S and S ′, respectively) and a constriction point (B ′ and C ′ for
S and S ′, respectively) where the system dynamics slows down
considerably while it is transiting through this region of phase
space. By switching appropriately between the sequences S and S ′

the system state can be maintained indefinitely within the interval
(APDB ′ ,APDC′ ) around the unstable fixed point of f , which reduces
the magnitude of alternans (for constant T the system switches
between APDB and APDC).

dynamics has a stable fixed point at a∗ [= f (T − a∗)]. When
T is reduced, this fixed point becomes unstable and a period-2
attractor is generated where a long APD is followed by a
short APD and vice versa. It is easy to see that such stable
alternans will correspond to three fixed points in the composite
return map f ◦ f as shown in Fig. 10. In the figure, the
middle fixed point is unstable while the other two are stable.
When the alternating period pacing scheme is applied, the
system follows one of two possible maps depending on the
exact sequence of the two pacing periods T± = T ± �T

being used, viz., S : T+T−T+T− . . . or S ′ : T−T+T−T+ . . ..
Both of these maps are characterized by the existence of a
stable fixed point (close to one of the two APDs seen during
alternans induced by constant period pacing) and a constriction
point near the unstable fixed point of the map where the
curve comes very close to the diagonal line an+2 = an. In
a situation analogous to that observed during intermittency
in deterministic systems [19], the system dynamics slows
down significantly as it negotiates this region of phase space
and thus can act as a trapping region. By switching between
the sequences according to Eq. (3), the system is maintained
indefinitely in the narrow region whose limits are defined by
the constriction points of the two maps S and S ′ (Fig. 10). We
can observe this by comparing the system trajectory on the
first return maps [Eq. (1)] corresponding to the uncontrolled
and controlled cases shown in Fig. 11. Figure 11(a) shows
the evolution from an initial APD equal to 100 ms to a
stable period-2 behavior having a large alternans amplitude
when only a single pacing period T is used. Figure 11(b)
shows the result of using the alternate pacing period scheme,
where instead of pacing at a constant T , we apply T− and T+
alternately. As shown in the figure, starting from the same
initial APD as in the uncontrolled case, the magnitude of
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FIG. 11. (Color online) Trajectory of the system on the first return map Eq. (1) in the (a) uncontrolled and (b) controlled cases. (a) The
cobweb diagram on the return map (dashed curve) for constant periodic pacing with T = 220 shows that the system converges to stable,
large-magnitude period-2 alternans. (b) The magnitude of the alternans reduces drastically when the pacing is alternated between the periods
T− = 218 and T+ = 222 according to the proposed control scheme. The return maps corresponding to the two periods are shown as dashed
curves and are indicated by T− and T+, respectively. The dynamical evolution of the return map in both cases begins from APD = 100 (the
initial trajectory is indicated by an arrow). The dotted line corresponds to the APDn = APDn+1 line.
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the alternans reduces remarkably [Fig. 11(b)]. The final state
in the presence of control corresponds to very-low-amplitude
oscillations around the an = an+1 state.

Our analysis of the control mechanism implies that there is
an optimal range of values of �T for which the pacing scheme
will be most effective: Increasing �T increases the space
between the curves and the diagonal line at the constriction
points, thereby reducing the efficacy of the method; in contrast,
reducing �T can decrease the robustness of the scheme as
fluctuations can easily eject the system state from the very
small trapping region between the constriction points. In
practice, the optimal values of �T can be easily obtained
through trial and error.

V. CONCLUSION AND OUTLOOK

From the discussions above, it is clear that the T+T− control
is capable of reducing the alternans in both simulation models
and experiments. Similar to the proportional scheme, the T+T−
control is also not stable in spatially extended system if there
is only one control point. It would be desirable to have a
scheme that can have global stability even when there is only
a single control point. In contrast, simulation results indicate
that T+T− control has a smaller number of conduction blocks
and control instabilities; especially in the presence of noise.
It would be important to understand the physical mechanism
of the T+T− control scheme; presumably investigations on
the phase space dynamics of the control can provide deeper

insights both theoretically and experimentally. Similar to the
situation that alternans will occur only for fast enough pacing
(less than a critical value of T ), we anticipate that our T+T−
control scheme will be able to suppress alternans magnitude
for �T larger than some critical value.

For the whole heart experiments, it is still a puzzle why
the alternans response of the heart would be different after
alternans suppression control. Since the magnitude of the
alternans response is governed by the restitution curve, a
different response after the feedback control suggests that the
restitution properties of the cardiac cells have been altered by
the control. Experimentally, it is found that for both the propor-
tional feedback and T+T− controls, the pacing interval changes
from a constant value to an almost constant value plus a small
random fluctuating part when compared to that of without
control. This small fluctuating part is always only a few percent
or less of the original constant value. Its large systematic effect
on the alternans is not expected. It is interesting to find out
why such a small random change in the pacing interval can
have a large systematic effect on the restitution on the cardiac
cells.
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