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How Unstable Are Complex Financial Systems?
Analyzing an Inter-bank Network of Credit
Relations
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Abstract The recent worldwide economic crisis of 2007–09 has focused attention
on the need to analyze systemic risk in complex financial networks. We investigate
the problem of robustness of such systems in the context of the general theory of
dynamical stability in complex networks and, in particular, how the topology of con-
nections influence the risk of the failure of a single institution triggering a cascade
of successive collapses propagating through the network. We use data on bilateral
liabilities (or exposure) in the derivatives market between 202 financial intermedi-
aries based in USA and Europe in the last quarter of 2009 to empirically investigate
the network structure of the over-the-counter (OTC) derivatives market. We observe
that the network exhibits both heterogeneity in node properties and the existence
of communities. It also has a prominent core-periphery organization and can resist
large-scale collapse when subjected to individual bank defaults (however, failure of
any bank in the core may result in localized collapse of the innermost core with
substantial loss of capital) but is vulnerable to system-wide breakdown as a result
of an accompanying liquidity crisis.

5.1 Introduction

Isaac Newton, possibly the greatest physicist of all time, is believed to have once
said that while he could calculate the motions of cosmic bodies, his theories are
useless for understanding the madness of crowds [1]. This statement was suppos-
edly made in the context of the mass frenzy that was seen among the general public
during the height of the South Sea Bubble of 1720, one of the most famous episodes
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of financial speculation and the panic triggered by its subsequent collapse [2]. In-
deed, until about the 1990s, the methods of physics were largely thought to be in-
applicable for the study of society, of which economic activity is an integral part.
However, in recent days, this perception has begun to change and it is instructive to
learn that Paul Samuelson, one of the leading figures of contemporary mainstream
economics, mentioned during an interview in 1998 that the physics of avalanches
was a better guide for understanding the “irrational exuberance” of the overvalued
markets of this period than what standard economics textbooks teach [3]. One might
be tempted to think that physics has at last come of age to be applied fruitfully for
understanding economic phenomena, even though we might be at the same stage
in our search for a physical theory of Economics (a discipline that has often been
referred to as Econophysics [4]) as natural philosophers were at the time of Newton
in their quest for a theory of the physical universe.

The late 2000s financial crisis, possibly the worst economic disaster since the
Great Depression of the 1930s, has brought to fore once again the poverty of main-
stream economics when forced to explain the real world rather than idealized sys-
tems using elegant but unrealistic assumptions of perfect competition and complete
knowledge. The inability of standard theories to understand the mechanisms that
result in such system-wide failures of financial markets is deeply worrying, as these
crises are damaging not just on their own account—often involving collapse of
large financial institutions, extensive intervention in the financial sector by the gov-
ernment and sometimes involving bailouts costing the taxpayer enormous sums of
money—but by affecting the stock market (and in the 2007–09 crisis, also the hous-
ing market) and constricting liquidity, they can depress the rest of the economy. The
potential of financial crashes to drive the economy into severe recession is not a
recent phenomenon but have been seen in earlier instances of market collapses [5].
The lack of availability of credit in the aftermath of such crises can result in failure
of businesses causing large-scale unemployment. This in turn reduces the overall
income and leads to a significant drop in consumer spending, which slows down the
economy further. It is therefore of critical importance to come up with an alternative
theoretical framework to understand the genesis of financial crisis, with the aim of
averting disaster before it strikes by learning to recognize warning signs of an im-
pending collapse. An even more desirable outcome will be to arrive at principles for
designing robust financial structures that are much less likely to suffer system-wide
failure than at present.

A theoretical approach to understand financial crisis has to consider what kind
of conditions can make a large-scale collapse of financial institutions likely. This is
in fact related to the general question of why and how do economic institutions fail,
one of the most fascinating topics of modern economics [6]. As we know from our
everyday experience that large events need not have been triggered by an extraordi-
nary stimulus, an important related question in this context is whether the failure of
a single economic entity can drive events so as to result in a cascading chain of suc-
cessive collapses among several inter-connected institutions— eventually leading to
a large-scale breakdown of the financial system [7]. Indeed, it was the specter of
such a catastrophe that prompted governments across the world to spend enormous
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sums of money to try and save banks and financial institutions that were considered
to be “too big to fail” in the sense of being so intricately and intimately connected
to a large number of other institutions that they would bring down a significant frac-
tion of them if allowed to fail. At an even larger scale, one can imagine that, if
unchecked, such a series of failures can spread world-wide, aided by the existence
of a densely connected global financial network that has been made possible by the
communication revolution [8]. It is conceivable that the general collapse of the fi-
nancial infrastructure coupled with the economic chaos that might ensue may well
be enough to trigger the collapse of our civilization and usher in a new “dark age”,
similar to the what has been repeatedly seen in history [9].

As collapse is usually manifested by a drastic reduction in the complexity of the
system, be it in terms of the diversity of entities it is able to support or the types
or nature of interactions between such entities which are allowed, it is natural to
ask whether increasing complexity can itself make a system more prone to failure.
This question has attracted a great deal of scientific interest for the past four or five
decades, especially among ecologists [10]. At first it may appear counter-intuitive
that a greater variety of elements and a strong degree of interactions among them
can lead to instabilities. Indeed, the risk incurred through lending by financial insti-
tutions is sought to be reduced by securitization and selling debt instruments to other
institutions, thereby connecting them together in a large web of mutual liabilities.
The principle behind this practice appears to be that by sharing a large sum among
many agents, the risk of default to each individual entity is reduced. In other words,
as in selling insurance, if one increases and diversifies as much as possible the popu-
lation which is insured, it reduces the risk that at any given time a significantly large
fraction of the insured individuals will fail and that the insurer has to pay out large
sums simultaneously. Arguments along these lines have been forwarded previously
in other areas, for example in ecology, to contend that larger complexity actually
makes a system more stable. However, in the early 1970s it was shown conclusively
by Robert May [11] through linear stability analysis of large randomly connected
networks that increasing the number of elements and/or the number of connections
between them, as well as, increasing the strength of interactions, makes the system
more unstable. In other words, a complex system is more likely to be knocked out
of its equilibrium state by a small perturbation at any of its constituent elements, as
compared to a simpler system.

Over the past four decades, the pioneering result of May has been debated in-
tensely by scientists from various disciplines (dubbed as the diversity-stability de-
bate [10]) and the exact conditions under which these results apply have been sought
to be determined. A significant challenge to the general validity of these results had
been that (a) the analysis was based on linearization of the system about a “fixed
point” (or static) equilibrium, and (b) the system considered comprised randomly
connected elements. However, subsequent studies of the global stability (e.g., mea-
sured in terms of the persistence of the constituent elements) of dynamical systems
in various regimes, viz., exhibiting periodic and chaotic behavior apart from fixed
point dynamics, has shown the original results to be valid even in this more general
setting [12]. Similarly, the advent of new models of networks in the late 1990s, e.g.,
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those exhibiting the “small-world” property [13] and those having “scale-free” dis-
tribution of degree1 [14, 15], which arguably better represent the connection topol-
ogy of complex systems seen in reality, has resulted in a series of studies of the
stability when the complexity of such networks is increased. Again, it appears that
increasing the size and connection density (as well as, strength of the connection
weights) of these networks make them more, rather than less, unstable [16, 17].
Thus, it appears that despite the appealing intuition of the insurance hypothesis, in-
creased connectance between a large number of dynamically evolving entities does
increase the risk of overall system failure, a result whose implications for economic
systems is obvious [18].

The recent crisis of 2007–09 has, therefore, brought forth calls by scientists (in-
cluding from Robert May himself) to apply the lessons learnt in ecology through
analyzing the stability of complex food webs to the problem of robustness in large,
strongly connected networks of financial institutions [19, 20]. For example, struc-
tural properties of robust networks that can be identified as contributing to the dy-
namical stability of the system can be implemented in designing artificial entities
such as the financial network to decrease their likelihood of failure when subjected
to episodes of stress. It has been pointed out that “ecosystems are robust by virtue
of their continued existence” [19], i.e., only those networks have survived (and are
therefore seen today), whose structure enabled them to withstand the high degree
of fluctuation in their environment and in the dynamics of their constituent species.
On the other hand, financial networks have emerged very recently through the un-
coordinated decisions of a large number of agents, often having divergent aims and
interests. The connection topology of the network has not been developed based on
robust design principles nor has the system been subjected to evolution through a se-
ries of successive failures and regrowth to attain a relatively stable configuration. In
order to assess the fragility of the existing system (prior to redesigning it to make it
more stable), we have to first reconstruct the network of interactions between finan-
cial institutions and study the dynamical stability implications of such a structure
through simulations. Such an analysis can alert us to either “keystone” nodes in the
network whose removal through failure can result in a significant number of other
nodes failing in rapid succession.

Several such empirical studies of the inter-dependency networks of financial in-
stitutions have recently appeared in the literature. In particular, a very large network
of over 7500 banks in USA connected through the Fedwire interbank payment net-
work operated by the Federal Reserve System has been analyzed to reveal a sparsely
connected system (only 0.3 % of the potential number of connections are actually
observed) which nevertheless has relatively low average path length—a signature
of the “small-world” phenomenon seen in many other networks—thus, indicating
the existence of an extremely compact structure [21]. More importantly, the major-
ity of the links correspond to weak flows, and focusing on the small set of high-
value transactions reveals the existence of a core—a small set of 25 banks which
are densely inter-connected—to which other banks (constituting the periphery) con-

1The degree of a node is the number of links it possesses.
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nect. Such core-periphery organization, seen across many other complex systems,
ranging from networks of neurons [22] to language [23], has also been reported for
other networks of financial institutions such as the web of credit relations among
Austrian banks [24]. A recent study on financial contagion propagation has claimed
that applying stress in the core and in the periphery will have very different conse-
quences for the system [25]. Another study has found a distinct bimodal capacity
of nodes to propagate contagion, with those in the periphery having little or no ef-
fect while failure of nodes in the core can destroy the system [43]. The Fedwire
network also exhibits scale-free degree distribution [21], another property it shares
with many other inter-bank networks including those of Austria [24] and Japan [26].
Similar studies of the relation between properties of the connection topology of the
credit network among financial institutions and its stability have also been carried
out for other systems, including the European money market for overnight loans (re-
quired for maintaining liquidity) between Italian banks [27] and the Japanese credit
network between banks and large firms [28, 29].

It is in this context that we report our analysis of a network of bilateral liabilities
(or exposures) between 202 financial intermediaries (FI)2 based in USA and Europe
reconstructed from data for the last quarter of 2009 (the period during which the
financial crisis of 2007–09 reached its denouement). Systemic risk in this system
can be quantified as the probability that the failure of an individual entity results
in a cascading series of defaults propagating through the network of mutual lia-
bilities, with an institution failing when it is unable to honor its commitments to
creditors as a result of its debtors failing and thereby defaulting on their commit-
ments to it. Analysis of topological properties of the network reveal many of the
same features seen in other financial networks, such as core-periphery organization
and long-tailed distributions of degree and strength.3 However, more important than
such static properties is the dynamical response of the network to local perturbations
(specifically, the failure of a particular FI). We have used a simple and intuitively
appealing model of failure propagation in the network that takes into account the
Tier-I core capital of each institution in addition to the information about bilateral
liabilities, to study the impact of the collapse of each constituent FI on the rest of
the network. This allows us to identify “super-spreader” nodes in the system whose
collapse can trigger failure of a large fraction of elements in the network. A crucial
parameter that affects this process is the critical fraction (q) of core capital of an FI
that its net loss (as a result of failure of FIs connected to it via mutual liabilities)
must exceed in order for it to collapse. Although the actual value of this critical
fraction cannot be reliably determined from the empirical data, by studying the be-
havior of the system over a large range of q , it appears that a global or system-wide

2A financial intermediary is an institution, such as a bank, a credit union or a mortgage loan com-
pany, that transfers funds from investors (lenders) to those requiring capital (borrowers). For in-
stance, a bank uses its deposits to provide loans or mortgages thereby mediating transactions be-
tween surplus and deficit agents [30].
3Strength of a node is the sum of weights of all links belonging to it.



64 S. Sinha et al.

collapse is unlikely except at very small (and possibly unrealistic) values of this pa-
rameter. Our observation that the propagation of disturbances along the network of
explicit financial linkages (also referred to as contagion in the economics literature)
is unlikely to cause system-wide collapse is good news and agrees with an earlier
study [31]. The bad news is that the members of the highly clustered inner core who
constitute the leading broker-dealers are potentially in need of tax-payer bailouts as
failure of any member in the core may trigger failure of the entire core. We also see
that an accompanying liquidity crisis can simultaneously decrease q as more FIs fail
with time, thereby triggering even more failures and decreasing q even further. This
coupling between the collapse of financial institutions and the reduction in availabil-
ity of capital can thus drive a chain reaction of failures that can eventually cause the
entire system to breakdown. Our results thus paint a nuanced picture of inter-bank
networks, which can be viewed as “robust-yet-fragile” [32], and points out the im-
portance of liquidity crisis that may accompany a cascading series of bank failures
in triggering system-wide crisis in complex financial systems.

5.2 The Network of Financial Intermediaries

As already mentioned above, banks function as financial intermediaries between
lenders who deposit money in the bank and borrowers who take out loans or mort-
gages. On the assumption that at any given time at most a small number of depositors
will be withdrawing a substantial portion of their money, a bank holds only a small
fraction of the total amount deposited in reserve to cover regular transactions with
their customers and invests the rest in profit-earning enterprises [33]. While lending
out their money provides banks income through interest payments, this also exposes
them to credit risk of the borrowers defaulting on their promised payments. Another
source of risk for banks can be a sudden devaluation in some of their external assets,
such as, the drop in real estate prices following the end of a housing bubble. If such
losses are a substantial fraction of its capital, a bank may find it difficult to honor its
commitments to its lenders. Under such circumstances, if the bank faces a liquidity
crisis and is unable to raise a loan to cover its liabilities, it can fail. Thus, banks
need to have an optimized operational procedure in order to maximize their return
(by lending out as large a fraction of their total deposits as possible) while at the
same time minimizing the resulting risk.

A widely used method of risk reduction in modern finance is through the use of
risk management instruments known as derivatives which are contracts between two
parties specifying payoffs that will be made between them at some future date based
on the value of an underlying asset such as foreign exchange rates, bonds/interest
rates, commodities and equities [34]. As under normal circumstances a derivative
and its corresponding underlying asset are expected to change their value in the same
direction and by roughly the same amount, one can protect against loss by hedging,
i.e., holding opposite positions in the underlying asset and derivative markets at the
same time, so that losses in one market can be offset by gains in the other. In the
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specific context of credit risk, a credit default swap (CDS) is a type of derivative that
can act as insurance for the lending agency against non-payment of debt. Thus, by
purchasing CDS, a bank can transfer its credit risk (incurred by lending to a third
party) to the seller of the swap, as in return for a series of payments (equivalent
to an insurance premium) the seller agrees to compensate the buyer in the event
of the default by paying off the debt. While for any individual institution such risk
sharing by purchasing and selling derivatives may appear appealing, at the level of
the overall system such practices bind together the different entities into a strongly
interconnected entity where the failure of any one bank does not remain localized
in its effects but spreads through the system. The systemic risk inherent in such a
situation is worsened by a limited number of counterparties dominating the market
in selling risk management instruments.

The subject of our study is the network of bilateral assets and liabilities of 202
financial intermediaries (listed in Table 5.1) aggregated over all categories of deriva-
tive products (including foreign exchange contracts, interest rate swaps, equities,
CDS and commodities). In order to measure credit exposure of a FI, one first needs
to identify the derivatives contracts which would result in loss of value to the insti-
tution if the counterparty defaults [35]. In the absence of bilateral netting4 and any
collateral from counterparties, the Gross Positive Fair Value (GPFV) is the aggre-
gate fair value of all contracts where the FI is owed money by its counterparties.
Thus, GPFV is the maximum credit exposure or losses which the FI can incur if its
counter-parties default. Conversely, the sum total of values of all contracts where
a FI owes money to its counterparties is referred to as Gross Negative Fair Value
(GNFV), and it is the maximum loss incurred by the counterparties in the absence
of netting agreement or bank collateral. Derivatives liabilities and assets are esti-
mated by adjusting the gross payables and receivables (respectively) for collateral,
bilaterally netting where agreements exist and summing over all counterparties.

The firm level data on derivative assets and liabilities used in our study were
obtained from FDIC Call Reports for the fourth quarter of 2009 for US banks that
operate solely as national associations, and from individual Annual Financial State-
ments for the global US banks and Europeans FIs. The firm level derivative liability
(asset) is the positively (negatively) signed sum over all counterparties and prod-
ucts of the bilaterally netted market value of derivatives receivables and payables.
An algorithm described in Ref. [37] is used to reconstruct a bilateral matrix for
derivatives liability or asset between FIs from the firm-level data upto some margin
of error. The starting point for the network reconstruction is this bilateral gross flow
matrix between the FIs, B, where Bij represents the flow of financial obligation from
the seller (row FI i) of the derivative to the buyer (column FI j ). Thus, Ni = ∑

j Bij

is the GNFV of bank i, representing the total derivatives obligations owed by it to
other FIs, while Pj = ∑

i Bij is the GPFV of bank j , i.e., the total sum owed to it
by all other FIs. The matrix will in general be asymmetric (Bij �= Bji ) and will have
zeros along the diagonal (Bii = 0) as banks do not lend to/borrow from themselves.

4Bilateral netting, whose primary purpose is to reduce exposure to credit risk, is an arrangement
between two parties to exchange only the net difference in their obligations to each other [36].
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Table 5.1 The list of 202 banks analyzed in this article arranged in decreasing order according to
their Tier-I core capital

i Financial intermediary Core capital
(billions USD)

1 Bank of America 111.92

2 Royal Bank of Scotland 98.28

3 Citibank 96.83

4 JP Morgan Chase 96.37

5 BNP Paribas 90.37

6 Barclays 77.56

7 Lloyds 74.27

8 UniCredit 56.07

9 Deutsche Bank 49.42

10 Morgan Stanley 46.67

11 Credit Agricole 44.53

12 Wells Fargo Bank 43.77

13 UBS 42.32

14 Wachovia Bank 39.79

15 Credit Suisse 39.49

16 HSBC 35.48

17 Societe Generale 34.69

18 Dexia 25.24

19 Standard Chartered 24.58

20 PNC Bank 24.49

21 Citibank (South Dakota) 19.71

22 Goldman Sachs 17.15

23 US Bank Natl Asso 16.25

24 Fifth Third Bank 13.57

25 Branch Banking & Trust Co 13.54

26 Suntrust Bank 11.97

27 State Street 11.38

28 Regions Bank 10.58

29 New York Mellon 10.15

30 TD Bank 9.27

31 Capital One 8.42

32 RBS Citizens 8.24

33 KeyBank Natl Asso 8.0

34 Union Bank 7.21

35 Comerica Bank 5.76

36 Manufacturers and Traders
Trust Co

4.99

37 Bank of the West 4.80

38 Northern Trust Co 4.76

39 Compass Bank 4.58

i Financial intermediary Core capital
(billions USD)

40 Marshall & Ilsley Bank 3.95

41 Harris Natl Asso 3.52

42 First Tennessee Bank 3.36

43 Huntington Natl Bank 2.87

44 UBS Bank USA 2.52

45 Citizens Bank
of Pennsylvania

2.43

46 RBC Bank (USA) 2.43

47 Zions First Natl Bank 1.81

48 Associated Bank 1.78

49 City Natl Bank 1.60

50 Frost Natl Bank 1.32

51 Amegy Bank 1.27

52 Webster Bank 1.27

53 BanCorpSouth Bank 1.14

54 Bank of Oklahoma 1.08

55 PrivateBank and Trust Co 1.06

56 Mizuho Corp Bank (USA) 1.05

57 Whitney Natl Bank 1.00

58 Susquehanna Bank 0.99

59 RaboBank 0.97

60 California Bank & Trust 0.96

61 Northwest Savings Bank 0.92

62 Arvest Bank 0.88

63 WesternBank Puerto Rico 0.84

64 Trustmark Natl Bank 0.84

65 Signature Bank 0.84

66 Firstmerit Bank 0.83

67 MB Financial Bank 0.82

68 Woodlands Commercial
Bank

0.75

69 Bank of Hawaii 0.75

70 Investors Savings Bank 0.75

71 Israel Discount Bank
of New York

0.72

72 United Community Bank 0.72

73 National Penn Bank 0.7

74 Doral Bank 0.69

75 Columbus Bank & Trust Co 0.67

76 Apple Bank for Savings 0.64
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Table 5.1 (Continued)

i Financial intermediary Core capital
(billions USD)

77 Banco Santander Puerto Rico 0.57

78 IberiaBank 0.55

79 Nevada State Bank 0.54

80 1st Source Bank 0.53

81 Natl Bank of Arizona 0.53

82 UMB Bank 0.53

83 Sterling Savings Bank 0.5

84 Texas Capital Bank 0.49

85 Southwest Bank 0.48

86 Safra Natl Bank of New York 0.48

87 Bank Leumi USA 0.45

88 Bank of North Georgia 0.43

89 Pinnacle Natl Bank 0.42

90 Natl Bank of South Carolina 0.4

91 Chemical Bank 0.4

92 Hancock Bank 0.38

93 Banco Bilbao Vizcaya
Argentaria PR

0.36

94 Columbia State Bank 0.36

95 R-G Premier Bank
of Puerto Rico

0.34

96 Rockland Trust Co 0.33

97 Sun Natl Bank 0.3

98 Hancock Bank of Louisiana 0.3

99 Sandy Spring Bank 0.29

100 Stellarone Bank 0.28

101 S & T Bank 0.27

102 Vectra Bank of Colorado 0.27

103 Centennial Bank 0.27

104 Wells Fargo HSBC Trade
Bank

0.26

105 First American Bank 0.26

106 Mainsource Bank 0.23

107 Boston Pvt Bank & Trust Co 0.22

108 Bangor Savings Bank 0.21

109 First Security Bank 0.21

110 First Commercial Bank 0.2

111 Integra Bank Natl Asso 0.2

112 Berkshire Bank 0.2

113 Enterprise Bank & Trust 0.2

114 Frontier Bank 0.19

i Financial intermediary Core capital
(billions USD)

115 American Chartered Bank 0.19

116 Bank of Nevada 0.18

117 American Natl Bank 0.17

118 Stockman Bank of Montana 0.16

119 American Natl Bank of Texas 0.15

120 First United Bank & Trust Co 0.15

121 Bank of Kentucky 0.13

122 StockYards Bank & Trust Co 0.13

123 Wilson Bank & Trust 0.13

124 Bank of North Carolina 0.13

125 Bank Rhode Island 0.12

126 Community Bank of Texas 0.12

127 FSG Bank 0.12

128 Community Trust Bank 0.1

129 Commerce Bank
of Washington

0.09

130 Paragon Commercial Bank 0.09

131 ICE Trust US LLC 0.08

132 Bryant Bank 0.08

133 Colorado Capital Bank 0.08

134 South Shore Savings Bank 0.08

135 D L Evans Bank 0.08

136 Commercial Bank 0.07

137 Capstar Bank 0.07

138 Northwestern Bank 0.07

139 Gulf Coast Bank & Trust Co 0.07

140 Business First Bank 0.06

141 Guaranty Bank 0.06

142 Guaranty Bond Bank 0.06

143 Avenue Bank 0.05

144 State Bank & Trust Co 0.05

145 Marine Bank 0.05

146 Northeast Bank 0.05

147 Horicon Bank 0.05

148 Citizens Natl Bank 0.05

149 Town North Bank 0.05

150 American State Bank 0.05

151 Community Natl Bank
of Texas

0.05

152 First State Bank
of East Detroit

0.05
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Table 5.1 (Continued)

i Financial intermediary Core capital
(billions USD)

153 Clinton Savings Bank 0.05

154 Jersey Shore State Bank 0.05

155 Passumpsic Savings Bank 0.04

156 Coastal States Bank 0.04

157 Southern Bank 0.04

158 Lincoln Savings Bank 0.04

159 United Bank & Trust 0.04

160 Oakworth Capital Bank 0.03

161 Central Bank 0.03

162 Hometown Bank 0.03

163 Security Financial Bank 0.03

164 Progress Bank & Trust 0.03

165 State Bank Financial 0.03

166 Cornerstone Bank 0.03

167 Bank of South Carolina 0.03

168 C US Bank 0.03

169 Texas Bank 0.03

170 Biddeford Savings Bank 0.03

171 Paragon Natl Bank 0.03

172 Cornerstone Community
Bank

0.03

173 South Central Bank
of Barren County

0.03

174 Somerset Hills Bank 0.03

175 Platte Valley Bank 0.03

176 Keysource Commercial Bank 0.02

177 First State Bank 0.02

178 Premier Commercial Bank 0.02

i Financial intermediary Core capital
(billions USD)

179 Providence Bank 0.02

180 Carroll County State Bank 0.02

181 State Bank of Faribault 0.02

182 Summit Bank 0.02

183 FirstBank 0.02

184 Touchmark Natl Bank 0.02

185 State Bank & Trust Co 0.02

186 First Natl Bank 0.02

187 Commerce Bank of Oregon 0.01

188 Canyon Community Bank 0.01

189 Nebraska Natl Bank 0.01

190 First Natl Bank
of Junction City

0.01

191 First Vision Bank
of Tennessee

0.01

192 New Frontier Bank 0.01

193 Citizens State Bank 0.01

194 Keokuk County State Bank 0.01

195 Boone Bank & Trust Co 0.01

196 Northwoods State Bank 0.01

197 Cleveland State Bank 0.01

198 Farmers Bank 0.01

199 Farmers Savings Bank
& Trust

0.01

200 Business Bank 0.01

201 Mount Vernon Bank
& Trust Co

0.01

202 West Town Savings Bank 0.01

For simplicity we have then constructed an antisymmetric matrix M of netted
positions between FIs, i.e., Mij = Bij −Bji = −Mji . For each FI i, a positive (neg-
ative) entry Mij along the i-th row gives the net sum payable to (receivable from)
the counterparty FI j . To analyze a chain of cascading failures following the col-
lapse of bank i, only the positive entries of M are relevant—as the contagion flows
from the failed FI to its net creditor FIs (i.e., those counterparties to which it owes
more than what they have borrowed from it). Thus, the matrix J we use to construct
the network of bilateral exposures among the FIs is obtained from M, by replacing
all negative matrix entries with zeros, i.e., Jij = Mij if Mij ≥ 0 and Jij = 0 other-
wise. This represents a weighted, directed network of financial institutions, with a
link being directed from a bank to its net creditors and the link weight being the net
liability (in units of billions of US Dollars).
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Fig. 5.1 The cumulative distribution function for (left) the core capital (CT 1) of the 202 FIs con-
sidered and (right) the netted bilateral exposure Jij scaled by the Tier-I capital of the creditor bank.
Assuming a value of 0.06 for the critical fraction q , all links to the right of the broken vertical line
will spread contagion in the network

While most FIs in the network either send or receive at least one link, there are 15
nodes which have neither incoming nor outgoing links. In addition there is one other
node for which the sum borrowed from another FI exactly equals the sum it has lent,
so that on netting it does not have any net liability with respect to other FIs. The six-
teen isolated FIs are City National Bank (node 49), Northwest Savings Bank (61),
Apple Bank for Savings (76), Bangor Savings Bank (108), American National Bank
of Texas (119), D L Evans Bank (135), Northeast Bank (146), Lincoln Savings Bank
(158), Progress Bank & Trust (164), Providence Bank (179), Carroll County State
Bank (180), Commerce Bank of Oregon (187), Canyon Community Bank (188),
New Frontier Bank (192), Keokuk County State Bank (194) and Cleveland State
Bank (197).5 The largest connected component (LCC) of the network of netted bi-
lateral obligations between FIs comprises NLCC = 186 nodes, which have only 424
connections (out of the NLCC(NLCC − 1)/2 = 17205 total number of possible links)
between them and is therefore very sparse.

In addition to the data on bilateral exposure, we also have information about the
Tier-I capital, CT 1 (in units of billions of USD) of each FI (Fig. 5.1(left)), which
measures the financial strength of a bank and comprises the core capital consist-
ing primarily of common stock and disclosed reserves (or retained earnings) [38].
Internationally set standards (the Basel agreements) specify the desired minimum
ratio of the core capital of a bank to the total risk-weighted assets held by it in
order to provide protection against defaults or sudden loss in value. In our model
for failure propagation in the inter-bank network, we specify a critical fraction q

of the Tier-I capital of an FI, which, if exceeded by the total net loss of the bank
resulting from failures of one or more of its debtor counterparties, will cause its

5Except for the D L Evans Bank, for which the GNFV exactly equals the GNPV so that the total
netted exposure is zero, all the other banks have no bilateral exposure at all with respect to any
other bank in the network.



70 S. Sinha et al.

own failure. Figure 5.1(right) shows the distribution of the netted liabilities of the
FIs scaled by the core capital of the creditor counterparty, i.e., Jij /CT 1. If a node
j defaults, then the resulting perturbation will bring down its neighboring node i

only if Jij /CT 1(i) > q (a value of q = 0.06 is shown as a broken vertical line in
the figure). Thus, the distribution of Jij /CT 1 determines the stability of nodes with
respect to local perturbations (failure of a single FI).

5.3 Topological Properties

Calculating the standard topological properties from the directed network repre-
sented by J shows us that it shares many of the features of other inter-bank networks
which have been reported in earlier studies. For example, it exhibits the characteris-
tics of a “small-world” network [13] having both low average path length (〈l〉 = 3.6)
and high clustering coefficient (C = 0.24). The undirected and non-weighted net-
work shows disassortative mixing by degree (assortative coefficient r = −0.28), i.e.,
nodes with low degree preferentially connect to those having high degree. This may
be related to the strong core-periphery structure seen in the network, where a small
number of highly (and strongly) interconnected banks form the central nucleus to
which most of the other banks of the network connect.

We use a generalization of the core decomposition technique applied to directed
networks described in Ref. [22] to obtain the in-degree and out-degree k-core—a
subnetwork containing only those nodes which have at least k incoming and outgo-
ing links (respectively)—for the unweighted network corresponding to J . The cores
corresponding to in-degree and out-degree need not be identical although they may
have nodes in common, and this is indeed what is observed. We observe that 19
banks belong to both the innermost in-degree and out-degree cores (Nodes 1–7, 9–
10, 12, 14–17, 20, 22, 26, 27, 29 and 33—see Table 5.1 for the identity of these FIs),
while 4 banks belong only to the out-degree innermost core (Nodes 8, 11, 13 and 33)
and only 1 bank (Node 19) belong only to the in-degree innermost core. Thus a set
of 24 banks, all having relatively high core capital, form the highly interconnected
central nucleus of the network to which the other banks connect.

While the in-degree and out-degree of an FI can give a sense of its “centrality”
(i.e., importance) in the network, an even better measure is to use eigenvector cen-
trality, which not only considers how many connections a node has, but also weighs
this with the importance (or centrality score) of each neighbor. It is measured by
simply considering the eigenvector corresponding to the largest eigenvalue of the
adjacency matrix for the network, with the vector components corresponding to
each node being their eigenvector centrality score. When a node has high eigenvec-
tor centrality, this could be either because it has many neighbors or it has relatively
large number of important neighbors or both [39]. However, the standard method of
determining eigenvector centrality does not work very well for directed networks,
as is the case here. Using the Katz centrality, which works well for directed net-
works, also has limitations which can be overcome by using a variation, viz., the
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Fig. 5.2 The cumulative distribution function for (left) the in-degree kin (circles) and out-degree
kout (squares) and (right) the in-strength sin (circles) and out-strength sout (squares) of the 202 FIs

Page Rank centrality measure used for example to assign importance to web pages.
In particular, we use the Arnoldi iteration algorithm for Page Rank [40] and imple-
mented in a package by David Gleich [41]. The free parameter α is set equal to 0.85
(as used for heuristic reasons by the Google search engine [39]). We find that the
bank having highest Page Rank is JP Morgan Chase (Node 4), while the next nine
banks in decreasing order of Page Rank are Societe Generale (Node 17), Bank of
America (1), Morgan Stanley (10), Deutsche Bank (9), Royal Bank of Scotland (2),
Lloyds (7), Goldman Sachs (22), HSBC (16) and BNP Paribas (5). Thus, banks with
high centrality (as measured by Page Rank) not only have large core capital but are
also the ones belonging to the innermost core for both in-degree and out-degree.
There is thus a large degree of agreement among the topological measures used to
identify the most crucial nodes of the network.

A recent paper that has looked at systemic risk from the perspective of ecosystem
stability has stated that two topological features of inter-bank networks that are cru-
cial are “First, diversity across the financial system. . . homogeneity bred fragility.
. . . Second, modularity within the financial system. . . Modular configurations pre-
vent contagion infecting the whole network in the event of nodal failure” [20]. We
now proceed to verify whether the FI network indeed shows evidence of (a) hetero-
geneity in node properties, e.g., in terms of degree, strength, Tier-I capital, etc. and
(b) the existence of modularity (i.e., multiple communities of nodes, with members
of each community being more densely and/or strongly connected amongst them-
selves than with members of other communities).

We have already shown in Fig. 5.1 above the distributions for the Tier-I cap-
ital and the netted bilateral liabilities (scaled by the core capital), both of which
span several orders of magnitude but exhibit sharply decaying tails. Figure 5.2(left)
shows the distributions for both the in-degree and the out-degree of each node in the
FI network, while the distributions for the in-strength and out-strength (correspond-
ing to the aggregate of the net amounts lent and borrowed by a bank, respectively)
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are shown in Fig. 5.2(right). All the distributions have long tails; however, prelimi-
nary statistical tests do not appear to suggest a scale-free nature for them. JP Morgan
Chase bank (Node 4) has the highest in-degree (30) and out-degree (39), as well as
the largest out-strength (85.42), while Deutsche Bank (Node 9) has the highest in-
strength (108.76). We note that there is a strong linear correlation between the in-
and out-degrees of the nodes (r = 0.88 with p-value of 0) as well as between their
in- and out-strengths (r = 0.77, p-value = 0). The degree and strength of nodes also
show strong linear correlation of r = 0.75 and r = 0.73 respectively for the incom-
ing and outgoing connections. Not surprisingly, the nodes having large Tier-I capital
have high in-degree and out-degree (their linear correlation coefficients with CT 1
being 0.78 and 0.83 respectively with zero p-values), as well as, high in-strength
and out-strength (the linear correlation coefficients with CT 1 being 0.80 and 0.85
respectively with zero p-values). In the LCC of 186 nodes, 21 have no in-degree,
i.e., they are net borrowers in all of their bilateral interactions, while 36 have no out-
degree, i.e., they are net lenders in all their bilateral interactions. 129 nodes (i.e.,
about 70 % of the LCC) has both incoming and outgoing connections so that they
are net borrowers in some bilateral interactions while being net lenders in others.

In order to look for modularity in the FI network, we have used community de-
tection techniques on both the unweighted and weighted LCC of the network. The
spectral method for module determination [42] has yielded 13 communities in the
unweighted network, the largest having 54 nodes (comprising all of the top 10 %
of FIs according to their core capital except JP Morgan Chase) and the smallest
containing 3 nodes. The smaller modules are seen to have a star-like topology with
all other nodes having connections only to a central hub node of the module which
links the community to the rest of the network. A generalized version of the spec-
tral method has been used in the case of the weighted network, which results in the
network being split into two modules: one containing 8 nodes and another having
the remaining 178 nodes. The FIs in the smaller module (Royal Bank of Scotland,
Lloyds, UniCredit, Deutsche Bank, Credit Suisse, Societe Generale, DEXIA and
Standard Chartered) are all based in Europe, and this points to large credit flows
between FIs whose base of operations are geographically close.

5.4 Dynamics of Failure Propagation

The topological properties of the FI network investigated above can alert us to the
prominent role played by a small set of banks in the system, but do not by themselves
explain how a series of failures can propagate through the network in a cascading
process. In order to relate the static information contained in the weighted adjacency
matrix J to a dynamic picture of how perturbing certain “keystone” nodes can trig-
ger a significant fraction of the network to break down, we need to assume a specific
mechanism for the propagation of the effects of the default of a particular FI to other
FIs connected to it via credit relations. We have used a simple and intuitive model
where the failure of a node results in the loss of the net sums lent to it by all its
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creditors (assuming the existence of bilateral netting agreements between all pairs
of FIs). This can cause another node to fail if the total loss it faces as a result of all
other failures in the network so far, exceeds a critical fraction of its core capital. In
this process, as more and more nodes fail, the total loss faced by the remaining cred-
itor nodes increases substantially thereby making it more likely for them to fail in
subsequent time steps. Understandably, all nodes will not have similar impact upon
the network; we are particularly interested in identifying “super-spreader” nodes,
whose collapse will result in a system-wide breakdown in the network (or at least
that of a large fraction of nodes belonging to it).

To describe the model of failure propagation, we first define the dynamical state
of each node in terms of a binary variable si . At any time step t , if si(t) = 1 the node
is solvent, whereas if si(t) = 0 it is understood to have failed (once a node has failed,
it will remain so for all subsequent time steps). The netted bilateral exposures Jij

(i.e., how much is owed by bank i to bank j ) describes the interactions between the
nodes. In the event of a node i defaulting, all its creditors j lose the net sum Jij (> 0)

lent to it. If the total loss of any node j as a result of such failures exceeds a critical
fraction (q , a parameter in our simulations) of its Tier-I capital, CT 1(j), it also fails.
Thus, the dynamical evolution of each node i in the FI network is described by the
discrete-time equation:

st+1
i = 1 − Θ

[∑

j

Jji

(
1 − st

j

) − q · CT 1(i)

]

, (5.1)

where, Θ is the Heaviside step function (i.e., Θ(z) = 1 if z > 0 and = 0, otherwise).
The parameter q depends on the ease of credit availability in the system, with a
liquidity crisis corresponding to a sharp decline in the value of q .

Initially, all nodes in our model are in the solvent state (s = 1). To simulate the
propagation of failures, we then change the state of any one node to failed (s = 0)
and observe whether this causes any of its neighbors to fail, and if so, whether the
effect can propagate further along the network. We carry out the process repeatedly,
choosing each node in the network in turn to be the initial failed node. While most
nodes do not trigger any failure events among their neighbors, in a few cases the
initial event can cause a series of failures to cascade along the network. We wait
until the system reaches an equilibrium (i.e., the state of every node remains un-
changed with time) and count the total fraction ffailed of nodes which have failed as
a result of the initial single node failure. Figure 5.3(left) shows the largest of such
cascade events for q = 0.01, when the initial default of Node 23 results in a total of
67 nodes to fail by the end of the cascade. We observe that there are several such
nodes whose collapse affects the entire core of strongly connected FIs and tenta-
tively identify them as “super-spreader” nodes (i.e., FIs whose failure results in a
network-wide disturbance, in contrast to most other nodes which have no effect).
Looking at the distribution of ffailed in Fig. 5.3(right) we note its strongly bimodal
character. The large peak at extremely low values are due to the majority of nodes
which have no effect on the rest of the network, while the smaller peak at higher
values of ffailed correspond to the “super-spreader” nodes. We also note that de-
creasing q (corresponding to a constriction in the credit supply or capital buffers)
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Fig. 5.3 (Left) The failure of a single node in the FI network (node 23) can initiate a series of
cascading failures propagating through the network that results in a total of 67 nodes failing by
the end of the cascade (q = 0.01). The inset shows the time-evolution of the cascade process
with the fraction of surviving nodes, fsurv, declining from 1 at the initial time to a final value
of 0.67. (Right) The distribution of failure cascade sizes (measured in terms of the total fraction
of nodes in the system that fail over the duration of the cascade, ffailed) shown as a function
of the parameter q . The distribution has a strongly bimodal character with a node failure either
resulting in no effect on the rest of the network, or, bringing down a significant number of other
nodes (“many-or-nothing” behavior). The size of cascades increase significantly with decreasing q

(corresponding to tightening of credit availability)

increases the size of the cascades. However, the total number of nodes affected by
an initial single node failure does not approach the size of the entire FI network,
unless q has extremely low (and possibly unrealistic) values. Thus the propagation
of disturbances along the network of bilateral liabilities is unlikely to be the sole
cause of a system-wide collapse of financial institutions. This agrees with an earlier
study [31] which found that perturbations transferred via explicit financial linkages
are not enough for triggering large scale breakdown of financial systems. However,
our results also identify the vulnerability of the innermost core of broker-dealers,
which, though few in number, can through their failure result in over 75 % loss of
Tier-I capital in the system. Finally, the cascade of failures can initiate an accompa-
nying liquidity crisis, as the simultaneous default of multiple FIs may restrict credit
availability with lender institutions reluctant to give out large loans and adopting
a wait-and-watch policy. The resulting decrease in the parameter q will result in
even more FIs failing, which in turn further decreases credit availability making the
liquidity crisis more severe. Thus, a feedback process ensues with the failure prop-
agation and liquidity crisis driving each other, eventually resulting in a global or
system-wide collapse of the financial system. Thus, our results suggest that when
evaluating the robustness of complex financial systems we need to focus not only
on the network of explicit linkages between the institutions, but also on the overall
environment in which they operate.
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