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Abstract

The phenomenon of stochastic resonance (SR) is reported in a completely noise-free situa-
tion, with the role of thermal noise being taken by low-dimensional chaos. A one-dimensional,
piecewise linear map and a pair of coupled excitatory-inhibitory neurons are the systems used
for the investigation. Both systems show a transition from symmetry-broken to symmetric chaos
on varying a system parameter. In the latter state, the systems switch between the formerly
disjoint attractors due to the inherent chaotic dynamics. This switching rate is found to “res-
onate” with the frequency of an externally applied periodic perturbation (either parametric or
additive). The existence of a resonance in the response of the system is characterized in terms
of the residence-time distributions. The results are an unambiguous indicator of the presence
of SR-like behavior in these systems. Analytical investigations supporting the observations are
also presented. The results have implications in the area of information processing in biological
systems. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

“Stochastic resonance” (SR) is a recently observed cooperative phenomena in non-
linear systems, where the ambient noise helps in amplifying a sub-threshold signal
(which would have been otherwise undetected) when the signal frequency is close to
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a critical value [1] (see [2] for a recent review). A simple scenario for observing such
a phenomena is a heavily damped bistable dynamical system (e.g., a potential well
with two minima) subjected to an external periodic signal. As a result, each of the
minima are alternately raised and lowered in the course of one complete cycle. If the
amplitude of the forcing is less than the barrier height between the wells, the system
cannot switch between the two states. However, the introduction of noise can give rise
to such switching. As the noise level is gradually increased, the stochastic switchings
will approach a degree of synchronization with the periodic signal until the noise is so
high that the bistable structure is destroyed, thereby overwhelming the signal. So, SR
can be said to occur because of noise-induced hopping between multiple stable states
of a system, locking on to an externally imposed periodic signal.
The characteristic signature of SR is the non-monotonic nature of the signal-to-noise

ratio (SNR) as a function of the external noise intensity. A theoretical understanding
of this phenomena in bistable systems, subject to both periodic and random forcing,
has been obtained based on the rate equation approach [3]. As the output of a chaotic
process is indistinguishable from that of a noisy system, the question of whether a
similar process occurs in the former case has long been debated. In fact, Benzi et al.
[1] indicated that the Lorenz system of equations, a well-known paradigm of chaotic
behavior might be showing SR. Later studies [4,18] in both discrete- and continuous-
time systems seemed to support this view. However, it is di�cult to guarantee that the
response behavior is due to “resonance” and not due to “forcing”. In the latter case, the
periodic perturbation is of so large an amplitude, that the system is forced to follow
the driving frequency of the periodic forcing. The ambiguity is partly because the SNR
is a monotonically decreasing function of the forcing frequency and cannot be used to
distinguish between resonance and forcing.
Signature of SR can also be observed in the residence time distribution. In the pres-

ence of a periodic modulation, the distribution shows a number of peaks superposed on
an exponential background. However, this is observed both in the case of resonance as
well as forcing. The ambiguity is, therefore, present in theoretical [5] and experimental
[6] studies of noise-free SR, where regular and chaotic phases take the role of the
two stable states in conventional SR. Although the distribution of the lengths of the
chaotic interval shows a multi-peaked structure, this by itself is not su�cient to ensure
that the enhanced response is not due to “forcing”. In the present work this problem
is avoided by measuring the response of the system in terms of the peaks in the nor-
malized distribution of residence times [7]. For SR, the strength of the peaks shows
non-monotonicity with the variation of both noise intensity and signal frequency.
In this paper we present two simple models for studying stochastic resonance where

the role of noise is played by the chaos generated through the inherent dynamics of the
system. In Section 2, the �rst model for studying deterministic SR is introduced. It is a
1-dimensional piecewise linear map with uniform slope throughout. The numerical ob-
servation of resonance in computer simulations for parametric perturbation is described
and a theoretical analysis of these observations is given. Additive perturbations also
give rise to similar resonance behavior. In Section 3, we consider the second model,
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an excitatory–inhibitory neural pair. It is additively perturbed with a very low ampli-
tude signal and the system response is observed, for which numerical and theoretical
results are given. We conclude with a discussion on the implication of such resonance
phenomena for biological systems.

2. The 1-dimensional map model

Recently, SR has been studied in 1-D maps with two well-de�ned states (but not
necessarily stable) with switching between them aided by either additive or multiplica-
tive external noise [8]. However, dynamical contact of two chaotic 1-D maps can also
induce rhythmic hopping between the two domains of the system [9]. We now show
how the chaotic dynamics of a system can itself be used for resonant switching between
two states, without introducing any external noise.
The model chosen here is a piecewise linear anti-symmetric map, henceforth referred

to as the Discontinuous Anti-symmetric Tent (DAT) map [10], de�ned in the interval
[−1; 1]:

xn+1 = F(xn) =




1 + a(0:5− xn) if xn¿0:5 ;
1− a(0:5− xn) if 0¡xn¡ 0:5 ;
−1 + a(0:5 + xn) if − 0:5¡xn¡ 0 ;
−1− a(0:5 + xn) if xn6− 0:5 :

(1)

The map has a discontinuity at x= 0. The behavior of the system is controlled by the
parameter a (0¡a¡ 4). The map has a symmetrical pair of �xed points x∗1;2=± 1+a=2

1+a
which are stable for 0¡a¡ 1 and unstable for a¿ 1. Another pair of unstable �xed
points, x∗3;4 =± 1−a=2

1−a come into existence for a¿ 2. Onset of chaos occurs at a= 1.
The chaos is symmetry-broken, i.e., the trajectory is restricted to either of the two
sub-intervals R: (0; 1] and L: [ − 1; 0), depending on initial condition. Symmetry is
restored at a=2. It is to be noted that as a→ 2 from above, x∗3;4 both collide at x=0
causing an interior crisis, which leads to symmetry-breaking of the chaotic attractor. The
Lyapunov exponent of the map is a simple monotonic function of the parameter a.
To observe SR, the value of a was kept close to 2, and then modulated sinusoidally

with amplitude � and frequency !, i.e.,

an+1 =
{
a0 + � sin(2�!n) if x ∈ R ;
a0 − � sin(2�!n) if x ∈ L : (2)

We refer to this henceforth as multiplicative or parametric perturbation, to distinguish
it from additive perturbation (discussed later).
The system immediately o�ers an analogy to the classical bistable well scenario

of SR. The sub intervals L and R correspond to the two wells between which the
system hops to and fro, aided by the inherent noise (chaos) and the external periodic
forcing. The response of the system is measured in terms of the normalized distribution
of residence times, N (n) [7]. This distribution shows a series of peaks centered at
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Fig. 1. (a) Pn (n=1; 2; 3) versus ! for a0 = 2:01 and �=0:05, (b) Pn (n=1; 2; 3) versus a0 for !=1=400
and � = 0:05. The circles represent the average value of Pn for 18 di�erent initial values of x, the bars
representing the standard deviation.

nj = (j − 1
2 )n0, i.e., odd-integral multiples of the forcing period, n0 =

1
! . The strength

of the jth peak

Pj =
∫ nj+�n0

nj−�n0
N (n) dn (0¡�¡ 0:25) ; (3)

is obtained at di�erent values of !, keeping a0 �xed for j = 1; 2 and 3. To maximize
sensitivity, � was taken to be 0.25. For a0=2:01 and �=0:05, the response of the system
showed a non-monotonic behavior as ! was varied, with P1 peaking at !1 ∼ 1=400,
a value dependent upon a0 – a clear signature of SR-type phenomenon. P2 and P3
also showed non-monotonic behavior, peaking roughly at odd-integral multiples of !1
(Fig. 1(a)). Similar observations of Pj were also done by varying a0, keeping ! �xed.
Fig. 1(b) shows the results of simulations for ! = 1=400 and � = 0:05. Here also a
non-monotonicity was observed for P1; P2 and P3. The broadness of the response curve
and the magnitude of the peak-strengths are a function of the perturbation magnitude, �.
Analytical calculations were done to obtain the average residence-time at any one

of the sub intervals. This gives the dominant time-scale of the intrinsic dynamics.
Mapping the system dynamics to an approximately �rst-order Markov process, the
mean residence time is obtained as [10]

〈n〉= −1
log( 1−�=2−�

2=4
1−�2=4 )

' −1
log(1− �=2) ; (4)

where, � = a0 − 2. So, for a0 = 2:01; 〈n〉 ' 200. This predicts that a peak in the
response should be observed at a frequency 1

2〈n〉 ' 1=400, which agrees with the
simulation results.
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The mean time spent by the trajectory in any one of the sub-intervals (L or R)
can also be calculated exactly for piecewise linear maps [11]. From the geometry of
the DAT map, the total fraction of R which escapes to L after n iterations is found
to be ln = 2n�

2(2+�)n [10]. This is just the probability that the trajectory spends a period
of n iterations in R before escaping to L (

∑∞
j=1 lj = 1). So the average lifetime of a

trajectory in R is

〈n〉=
∞∑
j=1

(j − 1)lj = 2� : (5)

Note that, as �→ 0, Eq. (4) becomes identical to the above expression. For a0 = 2:01,
〈n〉= 200, in good agreement with the result obtained using the approximate Markov
partitioning (which ensures the validity of the approximation). By symmetry of the
map, identical results will be obtained if we consider the trajectory switching from L
to R.
Similar study was also conducted with additive perturbation for the above map. In

this case the dynamical system is de�ned as xn+1=F(xn)+� sin(2�!n). The simulation
results showed non-monotonic behavior for the response, as either ! or a0 was varied,
keeping the other constant, but this was less marked than in the case of multiplicative
perturbation.

3. The chaotic neural network model

The resonance phenomenon is also observed in an excitatory-inhibitory neural pair,
with anti-symmetric, piecewise linear activation function. This type of activation func-
tion has been chosen for ease of theoretical analysis. However, sigmoidal activation
functions also show similar resonance behavior. Fig. 2 shows a pair of coupled exci-
tatory and inhibitory neurons. The discrete-time dynamics of such simple neural net-
works are found to exhibit a rich variety of behavior, including chaos [12,19]. If xn
and yn (x; y ∈ [−1; 1]) be the state of the excitatory and inhibitory elements at the nth
iteration, respectively, then the discrete time-evolution equation of the system is given
by

xn+1 = Fa(wxxxn − wxyyn + In) ;
yn+1 = Fb(wyxxn − wyyyn + In) ;

where wij is the connection weight from neuron j to neuron i, and I is an external
input. The activation function is of anti-symmetric, piecewise linear nature, viz., Fa(z)=
−1; if z¡− 1=a, Fa(z) = az; if − 1=a6z61=a; and Fa(z) = 1; if z¿ 1=a: Under the
restriction wxy=wxx = wyy=wyx = k, the 2-dimensional dynamics reduces to a simple
1-dimensional form. The relevant variable is now the e�ective neural potential z= x−
ky (z ∈ [− 1; 1]), whose dynamics is governed by the map

zn+1 =F(zn) = Fa(zn)− kFb(zn) ;
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Fig. 2. The pair of excitatory and inhibitory neurons used for enhancing subthreshold signal.

where a; b are the suitably scaled transfer function parameters. The design of the
network ensures that the phase space [−1 + (kb=a); 1 − (kb=a)] is divided into two
well-de�ned and segregated sub-intervals L: [−1+(kb=a); 0] and R: [0; 1−(kb=a)]. The
critical points of the map are at zc=±1=a. Note that, ifF(zc)(=1− kb

a )¡F−1(0)(= 1
kb),

the chaos is asymmetric, the trajectory being con�ned to any one of the subintervals.
Again, if F(zc)¿ 1

b , the trajectory will eventually converge to a superstable periodic
cycle. Therefore, for symmetric chaos, the following inequalities must be satis�ed:

1
kb
61− kb

a
6
1
b
: (6)

From the �rst inequality, we have (kb)2

a − kb + 160, and solving for k in the lim-
iting case of an equality, the k-value at which the symmetry is just restored is ob-

tained as k = a
2b (1 ±

√
1− 4

a). Note that, real roots exist only for a¿4. Therefore,
for a¡ 4, there is no dynamical connection between the two sub-intervals and the
trajectory, while chaotically wandering over one of the sub intervals, cannot enter the
other sub interval. For a¿ 4, in a certain range of (b; k) values the system shows both
symmetry-broken and symmetric chaos, when the trajectory visits both sub intervals
in turn. The curves in (b=a; k)-parameter space forming a boundary between the sym-
metric and symmetry-broken chaotic domains are given by k = a(1±√

1− (4=a))=2b.
The second inequality of (6) gives, in the limiting case of an equality, k = a

b (1− 1
b),

which forms the boundary between the regions showing symmetric chaos and super-
stable periodic cycles, in the (b=a; k) parameter plane. The parameter space diagram in
Fig. 3 shows the various dynamical regimes occurring for di�erent values of k and
b=a, at a = 6. For the simulations reported here, a = 6 and b = 3:42, for which the
system shows symmetric chaos over a range of values of k.
The chaotic switching between the two sub-intervals occurs at random. However the

average time spent in any of the sub-intervals before a switching event can be exactly
calculated for the present model as

〈n〉= 1
bk(1− bk

a )− 1
: (7)

As a complete cycle would involve the system switching from one sub-interval to the
other and then switching back, the “characteristic frequency” of the chaotic process is
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Fig. 3. The (b=a) vs. k parameter space at a = 6.0, for neural pair dynamics governed by an anti-symmetric,
piecewise linear activation function. Region A: z∗=1− k stable, B: z∗=1=(1+ kb) stable, C: z∗=0 stable,
D: 2-period cycle between [(1− k);−(1− k)], E: superstable periodic cycles, F: two-band symmetry-broken
chaos, G: symmetric chaos. The two thin bands, between B and F, and again, between F and C, indicate
regions of single-band symmetry-broken chaos.

!c= 1
2〈n〉 . E.g., for the system to have a “characteristic frequency” of !=1=400 (say),

the above relation provides the value of k ' 1:3811 for a = 6; b = 3:42. The system
being symmetric, there is no net drift between L and R. However, in the presence of
an external signal of amplitude �, the symmetry is broken. The net drift rate, which
measures the net fraction of phase space of one sub-interval mapped to the other after
one iteration, is given by v= �; if �¡�c; and v=1− (kb=a)− (1=bk); otherwise. The
critical signal strength,

�c = 1− (k2b2 + a)=akb ; (8)

is a limit above which the net drift rate no longer varies in phase with the external
signal. For the aforementioned system parameters (a; b; k); �c ' 0:001. If the input
to the system is a sinusoidal signal of amplitude �¡�c and frequency ∼ !c, we
can expect the response to the signal to be enhanced, as is borne out by numerical
simulations. The e�ect of a periodic input, In = � sin(2�!n), is to translate the map
describing the dynamics of the neural pair, to the left and right, periodically. Fig. 4
shows the unperturbed map (solid lines) along with the maximum displacement to the
left and right (dotted lines) for �= 0:05. The resultant intermittent switching between
the two sub intervals, L and R, is shown in Fig. 5 for != 1=400 and �= 0:0005.
As in the previous Section, we verify the presence of resonance by looking at the

peaks of the residence time distribution, where the strength of the jth peak is given by
Eq. (3). For maximum sensitivity, � is set as 0.25. As seen in Fig. 6, the dependence of
Pj(j= 1; 2; 3) on external signal frequency, !, exhibits a characteristic non-monotonic
pro�le, indicating the occurrence of resonance at ! ' 1

2〈n〉 . For the system parameters
used in the simulation, 〈n〉=200. The results clearly establish that the switching between
states is dominated by the sub-threshold periodic signal close to the resonant frequency.



S. Sinha / Physica A 270 (1999) 204–214 211

Fig. 4. The map representing the dynamics of a neural pair for a=6:0; b=3:42 and k =1:3811. The �gure
in solid lines represent the unperturbed map F, while the �gures in dotted lines indicate the maximum
displacement due to a periodic signal of peak amplitude, � = 0:05.

Fig. 5. The time-evolution of the sinusoidally perturbed neural pair for a = 6; b = 3:42; k = 1:3811;
! = 1=400 and � = 0:0005. The broken line is the boundary between positive and negative values of z.

The variation of P1 with ! for di�erent values of signal amplitude, �, was also stud-
ied. For �¿�c ' 0:001, the variation in the drift rate no longer matches the signal, and
the maximum response is found to shift to higher frequency values
(Fig. 7): e.g., at � = 0:01, the maximum response in P1 occurs at ! ' 0:03. For
�¡�c, the magnitude of P1 at the resonance frequency, !c, has a non-monotonic nature
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Fig. 6. The peak strengths of the normalized residence time distribution, P1 (circles), P2 (squares) and P3
(diamonds), for periodic stimulation of the excitatory-inhibitory neural pair (a=6; b=3:42 and k=1:3811).
The peak amplitude of the periodic signal is � = 0:0005: P1 shows a maximum at a signal frequency
!c ' 1=400. Averaging is done over 18 di�erent initial conditions, the error bars indicating the standard
deviation.

Fig. 7. The strength of the �rst peak (P1) in the normalized residence time distribution for periodic stimulation
at �=0:001 (squares), = 0:0025 (diamonds) and =0:01 (triangles). The inset shows P1 at !c=1=400 against
�. System parameters same as in Fig. 6.

(Fig. 7, inset). For the system parameters mentioned here, the maximum response oc-
curs at � ∼ 10−5.
These results assume signi�cance in light of the work done on detecting SR in the

biological world. In neuronal systems, a non-zero SNR is found even when the external
noise is set to zero [13]. This is believed to be due to the existence of “internal noise”.
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This phenomenon has been examined through neural network modeling, e.g., in [14],
where the main source of such “noise” is the e�ect of activities of adjacent neurons.
The total synaptic input to a neuron, due to its excitatory and inhibitory interactions
with other neurons, turns out to be aperiodic and noise-like. The neural network model
employed in the present work is, however, the simplest system to date, which uses its
aperiodic activity to show SR-like behavior. There is also a possible connection of such
‘resonance’ to the occurrence of epilepsy, whose principal feature is the synchronization
of activity in neurons.

4. Discussion

Low-dimensional discrete-time dynamical systems are amenable to several analyt-
ical techniques and hence can be well-understood compared to other systems. The
examination of resonance phenomena in this scenario was for ease of numerical and
theoretical analysis. However, it is reasonable to assume that similar behavior occurs in
higher-dimensional chaotic system, described by both maps and di�erential equations.
In fact, SR has been reported for spatially extended systems (spatiotemporal SR) [15],
e.g., in coupled map lattices [8]. A possible area of future work is the demonstration
of phenomena analogous to spatiotemporal SR with a network of coupled excitatory–
inhibitory neural pairs.
The above results indicate that deterministic chaos can play a constructive role in the

processing of sub-threshold signals. It has been proposed that the sensory apparatus of
several creatures use SR to enhance their sensitivity to weak external stimulus, e.g., the
approach of a predator. Experimental study involving cray�sh mechanoreceptor cells
have provided evidence of SR in the presence of external noise and periodic stimuli
[16]. The above study indicates that external noise is not necessary for such ampli�-
cation as chaos in neural networks can enhance weak signals. The evidence of chaotic
activity in neural processes of the cray�sh [17] suggests that nonlinear resonance
(as reported here) due to inherent chaos might be playing an active role in such sys-
tems. As chaotic behavior is extremely common in a recurrent network of excitatory
and inhibitory neurons, such a scenario is not entirely unlikely to have occurred in the
biological world. This can however be con�rmed only by further biological studies and
detailed modeling of the phenomena.
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